Способ калибровки ph-метров

Изобретение может быть использовано на тепловых и атомных электрических станциях в сверхчистых водах типа конденсата и питательной воды энергоблока. В способе калибровки рН-метров, заключающемся в дозировании корректирующего реагента - вещества, изменяющего рН среды, в частности аммиака, в поток охлажденной пробы рабочей среды, с последующим измерением удельной электропроводности и температуры, расчете значения рН и установке на рН-метре рассчитанного значения рН, используют штатную линию измерения электропроводности охлажденной до температуры 25±10°С Н-катионированной пробы питательной, котловой воды или воды типа конденсата, устанавливают расход рабочей среды 5-10 л/ч, измеряют значение удельной электропроводности (χH25), вводят в поток рабочей среды корректирующий реагент с молярной концентрацией равной 0,001-0,002, повышая удельную электропроводность среды не более чем до 10 мкСм/см, для чего устанавливают расход корректирующего реагента 0,5-1,0 л/ч, при этом используют в качестве корректирующего реагента для щелочной среды водный раствор аммиака, измеряют удельную электропроводность (χK25) в потоке рабочей среды с водным раствором аммиака и определяют значение рН для щелочной среды с дозировкой аммиака по предложенному выражению: pHK25=8+lg(3,68⋅χK25-1,09⋅χH25-1,91⋅(χH25)2), для слабокислой среды в качестве корректирующего реагента используют раствор смеси кислого углекислого натрия, хлорида натрия и угольной кислоты, взятые в равных концентрациях, значение рН определяют по значению константы диссоциации угольной кислоты по первой ступени с учетом условий процесса равной 6,37 единиц рН, а для среды близкой к нейтральной используют раствор кислого углекислого натрия, значение рН25 которого равно 8,33. Изобретение обеспечивает повышение точности и воспроизводимости результатов калибровки в рабочем диапазоне рН от 6,0 до 10,0 как лабораторных, так и щитовых рН-метров, а также упрощение способа калибровки. 1 табл., 1 ил.

 

Способ калибровки рН-метров, заключающийся в дозировании корректирующего реагента - вещества, изменяющего рН среды, в частности аммиака, в поток охлажденной пробы рабочей среды, с последующим измерением удельной электропроводности и температуры, расчете значения рН и установке на рН-метре рассчитанного значения рН, отличающийся тем, что используют штатную линию измерения электропроводности охлажденной до температуры 25±10°C H-катионированной пробы питательной, котловой воды или воды типа конденсата, устанавливают расход рабочей среды 5-10 л/ч, измеряют значение удельной электропроводности (χH25), вводят в поток рабочей среды корректирующий реагент с молярной концентрацией равной 0,001-0,002, повышая удельную электропроводность среды не более чем до 10 мкСм/см, для чего устанавливают расход корректирующего реагента 0,5-1,0 л/ч, при этом используют в качестве корректирующего реагента для щелочной среды водный раствор аммиака, измеряют удельную электропроводность (χК25) в потоке рабочей среды с водным раствором аммиака и определяют значение рН для щелочной среды с дозировкой аммиака по выражению:

а для слабокислой среды в качестве корректирующего реагента используют раствор смеси кислого углекислого натрия NaHCO3, хлорида натрия NaCl и угольной кислоты Н2СО3, взятые в равных концентрациях, значение рН определяют по значению константы диссоциации угольной кислоты по первой ступени в виде рКI с учетом условий процесса равной 6,37 единиц рН, где , где - концентрация угольной кислоты, моль/л, - концентрация гидрокарбонат-ионов, моль/л, fI - коэффициент активности, а для среды близкой к нейтральной используют раствор кислого углекислого натрия, значение рН25 которого равно 8,33.



 

Похожие патенты:

Изобретение относится к области методов регулирования параметров газовых сред и может быть использовано для регулирования концентрации газовых компонентов исследуемых газовых сред.

Изобретение относится к области методов регулирования параметров газовых сред и может быть использовано для регулирования концентрации газовых компонентов исследуемых газовых сред.

Группа изобретений относится к определению аналита в биологической текучей среде. Представлена электрохимическая аналитическая тест-полоска для определения аналита в образце биологической текучей среды, содержащая: первую камеру для приема образца, содержащую: первое отверстие для нанесения образца; и второе отверстие для нанесения образца; первый электрод, размещенный в первой камере для приема образца между первым отверстием для нанесения образца и вторым отверстием для нанесения образца; второй электрод, размещенный в первой камере для приема образца между первым отверстием для нанесения образца и вторым отверстием для нанесения образца; вторую камеру для приема образца, которая пересекает первую камеру для приема образца между первым электродом и вторым электродом, образуя таким образом пересечение камер, и по меньшей мере первый рабочий электрод, второй рабочий электрод и противоэлектрод/электрод сравнения, размещенные во второй камере для приема образца.

Изобретение относится к устройству для определения концентрации газа: оксида серы (SOX), содержащегося в выхлопных газах из двигателя внутреннего сгорания. Устройство определения концентрации газа включает в себя элемент определения концентрации газа и электронный блок управления.

Изобретение относится к области потенциометрических методов анализа и мембранных технологий и может быть использовано для совместного определения органических и неорганических ионов в многокомпонентных водных средах.

Использование: область методов анализа газовых сред и устройств для измерения параметров газовых сред, для контроля и определения физико-химических параметров указанных сред.

Использование: для контроля значения pH раствора. Сущность изобретения заключается в том, что устройство контроля pH содержит камеру для вмещения раствора, полимер, погружаемый в раствор, причем размер полимера способен изменяться в зависимости от того, превышает ли pH раствора пороговое значение, детектор для обнаружения изменения размера полимера.

Группа изобретений относится к биосенсорам с системой распознавания недостаточного заполнения. Способ оценки объема образца в биосенсоре содержит подачу регулярной последовательности опроса, обнаружение наличия образца, подачу расширенной последовательности опроса и определение того, является ли объем образца достаточным для анализа.

Группа изобретений относится к области медицины и может быть использована для определения концентрации аналита в образце. Способ определения концентрации анализируемого вещества в биологическом образце содержит этапы, на которых: генерируют выходной сигнал в ответ на реакцию окисления/восстановления анализируемого вещества в биологическом образце; генерируют вторичный выходной сигнал из биологического образца от дополнительного электрода в ответ на содержание гематокрита в образце; определяют по меньшей мере одну индексную функцию, зависящую от множества параметров ошибки и определяют концентрацию анализируемого вещества по меньшей мере по одному выходному сигналу и уравнению компенсации наклона, зависящему от индексной функции, причем уравнение компенсации наклона включает в себя опорную корреляцию и отклонение наклона.

Изобретение относится к аналитической химии и химической технологии и может быть использовано для сложных по составу растворов, содержащих ванадий и уран. В способе титриметрического определения урана в растворах в присутствии ванадия, к анализируемому раствору добавляют фосфорную кислоту, далее 10-15 мл 2 моль/дм3 серной кислоты и 5-10 мл трет-бутанола.

Изобретение относится к области измерительной техники. Представлена система, включающая в себя платформу для выполнения по меньшей мере одного протокола анализа. Платформа может включать в себя проточную ячейку, которая может содержать по меньшей мере один датчик. Платформа может также включать в себя устройство считывания, которое может быть на связи с упомянутым датчиком. Кроме того, датчик может поддерживать связь с устройством считывания в течение всего процесса выполнения протоколов анализов для передачи данных, касающихся физических событий в проточной ячейке или электрохимического состояния вещества, содержащегося в проточной ячейке. Технический результат – повышение точности получаемых данных. 2 н. и 6 з.п. ф-лы, 10 ил.

Изобретение относится к области измерительной техники. Представлена система, включающая в себя платформу для выполнения по меньшей мере одного протокола анализа. Платформа может включать в себя проточную ячейку, которая может содержать по меньшей мере один датчик. Платформа может также включать в себя устройство считывания, которое может быть на связи с упомянутым датчиком. Кроме того, датчик может поддерживать связь с устройством считывания в течение всего процесса выполнения протоколов анализов для передачи данных, касающихся физических событий в проточной ячейке или электрохимического состояния вещества, содержащегося в проточной ячейке. Технический результат – повышение точности получаемых данных. 2 н. и 6 з.п. ф-лы, 10 ил.

Изобретение относится к области методов измерений параметров состояния изменяющейся во времени газовой среды и может быть использовано для контроля безопасного состояния наблюдаемой многокомпонентной газовой среды, содержащей токсичные или взрывопожароопасные компоненты. Предложен способ измерения параметров многокомпонентной газовой среды в герметичном контейнере с хранящимися в нем объектами. Способ включает измерение параметров с использованием датчиков температуры, относительной влажности и давления и контроль безопасного состояния многокомпонентной газовой среды. Согласно изобретению герметичный контейнер с исследуемой многокомпонентной газовой средой с хранящимися в нем объектами размещают в защитном контейнере, который затем помещают в климатическую камеру. В каждом из упомянутых контейнеров и в климатической камере устанавливают систему независимых малогабаритных датчиков температуры, относительной влажности и давления либо датчики с комбинированной функцией этих параметров. Наблюдение за изменяющимися параметрами многокомпонентной газовой среды ведут в режиме реального времени с регистрацией измерительных сигналов и последующей передачей измеренных аналоговых сигналов на этап преобразования аналоговых сигналов в цифровые сигналы и передачей последних в ПК, в котором в автоматическом режиме формируется БД текущих значений параметров наблюдаемой многокомпонентной газовой среды и в котором имеются предварительно сформированные БД номинальных значений и БД критических значений измеряемых параметров многокомпонентной газовой среды. Контроль безопасного текущего состоянии многокомпонентной газовой среды в герметичном контейнере осуществляют на основании сравнения величин перепада давления, относительной влажности и температуры в многокомпонентной газовой среде герметичного контейнера с хранящимися в нем объектами и защитного контейнера по сравнению с параметрами газовой среды в климатической камере и по сравнению с критическими значениями этих параметров в контрольных БД. При этом, если текущие значения измеренных параметров находятся в диапазоне величин БД номинальных значений параметров и не достигают величин БД критических значений параметров, констатируют наличие безопасного состояния многокомпонентной газовой среды в герметичном контейнере. Технический результат - повышение достоверности измеряемых результатов. 1 ил.
Наверх