Способ получения трехмерных углеродных структур фотонного типа пиролизом этанола при повышенном давлении

Изобретение относится к области углеродных материалов и может быть использовано в электронной промышленности. Трехмерные углеродные структуры фотонного типа получают пиролизом этанола при температуре 500-800 °C и давлении 1000-4000 атм в течение 72 ч в присутствии платинового катализатора с добавлением 2% об. борной кислоты и 2% об. нашатырного спирта или микрокристаллов алмаза в количестве 9·10-6-1·10-3% об. Изобретение позволяет получать прямым одностадийным способом трехмерные углеродные структуры фотонного типа, представляющие собой трёхмерно упорядоченные полнотелые монодисперсные углеродные глобулы размером 1-5 мкм, отличающиеся от фотонных кристаллов периодичностью в ближнем ИК-диапазоне. 5 ил., 3 пр.

 

Изобретение относится к области получения углеродных материалов, в том числе трехмерных углеродных структур фотонного типа, отличающихся от фотонных кристаллов периодичностью в ближнем ИК-диапазоне.

Известен способ получения углеродных материалов (Heer, W.A., Poncharal, Ph., Berger, С, Gezo, J., Song, Z., Bettini, J., Ugarte, D. Liquid Carbon, Carbon-Glass Beads, and the Crystallization of Carbon Nanotubes Science 307, 907, 907-910 (2005)), он позволяет получать из жидкого углерода полнотелые глобулы углеродного стекла, нанизанные на многослойные углеродные нанотрубки, в безкаталитической электрической дуге с использованием углеродных электродов в инертной среде при давлении инертного газа 0.5 атм и температуре около 5000 К.

Данный метод производится в условиях экстремально высокой температуры, что, во-первых, технологически трудно достижимо; во-вторых, - процесс протекает в кинетически сильно неравновесных условиях, имеет неконтролируемые технологические параметры, что не дает возможности получения углеродных частиц монодисперсных размеров; в-третьих, этим способом невозможно получение трехмерных углеродных структур фотонного типа.

Также известен способ получения фотонных кристаллов (US Patent application 20050160964 A1, 28.07.2005. Photonic-crystal filament and methods), основанный на покрытии металлических нитей сферическими углеродными частицами. Получаемые данным методом материалы представляют собой, по меньшей мере, двухфазные системы, состоящие из металлических нитей, покрытых сферическими углеродными частицами, что отражается на неоднородности их оптических и электрических свойств.

Наиболее близким аналогом изобретения является способ получения трехмерных углеродных структур фотонного типа с применением технологии инвертированных углеродных пленок (US Patent application 20010019037 A1 (2001) Three dimensionally periodic structural assemblies on nanometer and longer scales).

Данный метод производится в 4 этапа и заключается в получении монодисперсных SiO2 сфер, их дальнейшим связыванием в опаловидные структуры с последующим осаждением на них углеродных пленок по CVD технологии и вытравливанием на заключительном этапе полимера или SiO2 плавиковой кислотой. Для каждой стадии создаются свои условия температуры и давления. Однако данный метод позволяет получать только инвертированные пленочные (пустотелые) трехмерные углеродные структуры фотонного типа. К тому же, данная технология является многостадийной, что существенно усложняет процесс синтеза и требует использования кислоты HF, что делает методику технологически сложной и экологически вредной.

Техническим результатом настоящего изобретения является получение трехмерных углеродных структур фотонного типа, образованных полнотелыми монодисперсными углеродными глобулами, посредством пиролиза этанола при повышенном давлении; очевидными преимуществами способа является его одностадийность и полнотелый характер строения структурообразующих углеродных глобул. Полученный материал отличается от наиболее близкого аналога периодичностью в ближнем ИК-диапазоне, что определяется размером углеродных глобул 1-5 мкм.

Технический результат достигается тем, что способ получения трехмерных углеродных структур фотонного типа производится путем пиролиза этанола при температуре 500-800°C с термоградиентом 150°С под давлением 1000-4000 атм в присутствии платинового катализатора с добавлением нашатырного спирта и борной кислоты или микрокристаллов алмаза в течение 72 часов.

Сущность изобретения состоит в получении трехмерных углеродных структур фотонного типа посредством пиролиза этанола при температуре 500-800°С под давлением 1000-4000 атм в присутствии платинового катализатора. В платиновый реактор загружается этанол, добавляется нашатырный спирт в количестве 2% об. и борная кислота в количестве 2% об. или микрокристаллы алмаза в количестве 9×10-6-1×10-3% об. Реактор заваривается и помещается в автоклав. Автоклав, установка высокого давления выводится на заданные параметры температуры и давления. Создается термоградиент между нижней и верхней частями реактора 150°С. Пиролиз производится в присутствии платинового катализатора продолжительностью до 72 часов.

Способ получения углеродных веществ осуществляли с использованием установки для высокобарного пиролиза (фиг. 1). На фиг. 1 показана принципиальная схема установки (автоклава) для высокобарного пиролиза, которая состоит из следующих частей: 1, 3 - гайка, 2 - шайба, 4 - обтюратор, 5 - грондбукса, 6 - прокладка, 7 - корпус, 8 - платиновая ампула (реактор). В данной установке катализатором является сама платиновая ампула (реактор).

При осуществлении способа получения трехмерных углеродных структур фотонного типа производился наружный нагрев, рабочая температура измерялась термопарами, давление определялось расчетным путем по заполнению автоклава. При подключении капилляра к хвостовику автоклава давление измерялось манометром.

После охлаждения реактор вскрывался, из него извлекались трехмерные углеродные структуры фотонного типа. Характер получаемых структур подтверждался при микроскопических исследованиях с помощью сканирующего электронного микроскопа VEGA 3 TESCAN, Tescan, Czech Republic.

Пример 1.

Способ получения трехмерных углеродных структур фотонного типа проводился пиролизом этанола при Т=800°С, Р=1000 атм с термоградиентом - 150°С, который создавался за счет разницы температур в верхней и нижней частях автоклава в присутствии платинового катализатора, в систему добавлялся нашатырный спирт в количестве 2% об. и борная кислота в количестве 2% об., продолжительность синтеза составляла 72 ч.

Трехмерные углеродные структуры фотонного типа образовались в результате пиролиза этанола в присутствии платинового катализатора. В данных условиях при Т=800°С, Р=1000 атм с температурным градиентом 150°С получают трехмерные углеродные структуры фотонного типа, представленные самородным углеродом в виде одноразмерных структурно связанных между собой глобул (фиг. 2). На фиг. 2 показаны углеродные глобулы, собранные в трехмерные структуры с плотнейшей упаковкой.

Получают трехмерные углеродные структуры фотонного типа, состоящие из монодисперсных полнотелых углеродных глобул, представленных стеклоподобным углеродом.

Пример 2

Способ осуществлялся аналогично примеру 1 и добавлением в систему вместо нашатырного спирта и борной кислоты микрокристаллов алмаза в количестве 9x10-6% об.

Получают углеродные трехмерные углеродные структуры фотонного типа, представленные стеклоподобным углеродом (фиг. 3). На фиг. 4 показаны углеродные глобулы, собранные в трехмерные углеродные структуры фотонного типа, нарастающие на кристалл алмаза затравки.

Пример 3

Способ производят аналогично примеру 2, но при температуре 500°С и давлении 4000 атм с добавлением в систему микрокристаллов алмаза в количестве 1×10-3% об.

Получают трехмерные углеродные структуры фотонного типа, состоящие из полнотелых глобул (фиг. 5). На фиг. 5 показаны углеродные глобулы, собранные в трехмерные углеродные структуры фотонного типа.

Таким образом, предложенный метод позволяет получать углеродные структуры фотонного типа, представляющие собой трехмерно упорядоченные полнотелые монодисперсные углеродные глобулы размером 1-5 мкм, отличающиеся от фотонных кристаллов периодичностью в ближнем ИК-диапазоне.

Способ получения трехмерных углеродных структур фотонного типа, отличающийся тем, что способ осуществляется посредством пиролиза этанола при температуре 500-800°С с термоградиентом 150°С под давлением 1000-4000 атм в течение 72 часов в присутствии платинового катализатора с добавлением борной кислоты в количестве 2% об. и нашатырного спирта в количестве 2% об. или микрокристаллов алмаза в количестве 9×10-6-1×10-3% об.



 

Похожие патенты:

Изобретение относится к области углеродных материалов и может быть использовано в электронной промышленности. Углеродные одномерные углеродные структуры фотонного типа получают пиролизом этанола при температуре 500-800°C с термоградиентом 50-100°С под давлением 1000-4000 атм в присутствии платинового катализатора в течение 72 ч и микрокристаллов алмаза в количесвте 9·10-6 об.%.

КАТАЛИЗАТОР, СПОСОБ ПРИГОТОВЛЕНИЯ КАТАЛИЗАТОРА И СПОСОБЫ ОКИСЛИТЕЛЬНОЙ КОНВЕРСИИ УГЛЕВОДОРОДОВ, ГИДРИРОВАНИЯ ОКСИДОВ УГЛЕРОДА И УГЛЕВОДОРОДОВ. .

Изобретение относится к способу повышения качества сырой нефти, тяжелой нефти или битума для получения полностью очищенных углеводородных продуктов, включающему (a) обеспечение сырьевого источника сырой нефти или тяжелой нефти или битума, (b) обработку указанного исходного сырья с получением по меньшей мере одной перегнанной фракции и неперегнанной остаточной фракции, (c) необязательно, обработку указанной неперегнанной остаточной фракции в процессе обработки углеводородов с получением обработанной фракции и обработанной остаточной фракции, (d) переработку указанной по меньшей мере одной перегнанной фракции и/или указанной обработанной фракции в процессе крекинга углеводородов с получением обработанного потока, (e) подачу указанной неперегнанной остаточной фракции или указанной обработанной остаточной фракции в генерирующий синтез-газ контур для получения потока обедненного водородом синтез-газа посредством реакции частичного окисления и взаимодействие указанного синтез-газа в реакторе Фишера-Тропша с получением синтезированных углеводородов, (f) добавление внешнего источника водорода к указанному обедненному водородом синтез-газу для оптимизации состава указанных синтезированных углеводородов и (g) смешивание части указанных синтезированных углеводородов с частью указанного обработанного потока с получением указанных полностью очищенных углеводородных продуктов.

Изобретение относится к химической технологии и может быть использовано при изготовлении сорбентов, катализаторов и носителей для катализаторов, сенсоров, газовых накопителей, конструкционных, футеровочных, оптических материалов и электродов для высокоёмких источников тока и энергетических преобразователей.

Изобретение относится к способу обработки тяжелого нефтяного сырья для производства жидкого топлива и базисов жидкого топлива с низким содержанием серы, предпочтительно бункерного топлива и базисов бункерного топлива.

Изобретение относится к технологии получения графитированных конструкционных материалов с повышенными физико-механическими характеристиками для создания углеродных изделий.

Изобретение относится к химической промышленности и нанотехнологии. Кристаллический графит обрабатывают раствором персульфата аммония в серной кислоте, не содержащей свободной воды.

Изобретение относится к установкам для получения водорода паровоздушной конверсией углеводородов. Установка включает узел паровоздушного риформинга 1, оснащенный линией ввода нагретой смеси воздуха и воды, а также линиями ввода нагретой смеси углеводородного сырья, воды, водного конденсата и вывода водородсодержащего газа, на которых установлен рекуперационный теплообменник 5.

Изобретение может быть использовано в атомной, химической промышленности, теплоэнергетике и металлургии. Электролизер для синтеза окисленного графита содержит корпус 1, разделенный на анодную и катодную секции, разделённые фторопластовой решеткой 7.
Изобретение относится к способу получения сорбентов, предназначенных для очистки питьевой воды. Способ получения сорбента включает приготовление пропиточного раствора, пропитку зерен активного угля и термическую обработку.

Изобретение может быть использовано при изготовлении медицинских приборов, смазочных материалов, гальванических и полированных покрытий, абразивов. Кластеры частиц алмаза, диаметр которых не превышает 1,0 мм, разделяют на отдельные частицы и (или) на кластеры меньших размеров, содержащие меньшее количество алмазных частиц, для чего сначала получают реакционную смесь перемешиванием кластеров частиц алмаза по меньшей мере с одним ненасыщенным органическим соединением, находящимся в жидком агрегатном состоянии, например, 1-ундеценом, или с раствором по меньшей мере одного ненасыщенного органического соединения по меньшей мере в одном растворителе.

Изобретение относится к синтезу наноалмазов для использования в элементах оптической памяти для квантовых компьютеров высокой производительности. Способ включает подготовку углеродсодержащей смеси, ее размещение в камере высокого давления, инициирование в углеродсодержащей смеси интенсивной ударной волны, фильтрацию и сепарацию продуктов синтеза, при этом в качестве углеродсодержащей смеси выбирают смесь на основе предельных углеводородов гомологического ряда алканов с общей формулой CnH2n+2 с числом углеродных атомов 16 и выше, нагревают ее до температуры выше 300 K, пропускают через нее метан под давлением выше 0,1 МПа и формируют в углеродсодержащей смеси импульсный электрический разряд.

Изобретение относится к получению монокристаллов алмазов, в частности, легированных азотом и фосфором, при высоких давлениях и температурах, которые могут быть использованы в устройствах электроники.
Изобретение относится к технологии получения синтетических алмазов методом динамического детонационного синтеза и может быть использовано для очистки и извлечения высокочистого алмаза из первичных продуктов.

Изобретение относится к нанотехнологии алмазных частиц, необходимых для финишной шлифовки и полировки различных изделий и для создания биометок. Способ получения кристаллических алмазных частиц включает добавление к порошку наноалмазов, полученных детонационным синтезом, циклоалкана (циклического насыщенного углеводорода) или многоосновного спирта в количестве 5-85 мас.
Изобретение относится к технологии обработки алмазов, а именно к методам придания им заданной геометрической формы, и востребовано в промышленности для производства электроники.

Изобретение относится к области обогащения полезных ископаемых, в частности к извлечению ультрадисперсных алмазов из сырья импактного происхождения, и может быть использовано при переработке кимберлитовых руд.

Изобретение относится к области средств получения высоких динамических давлений и температур и может быть использовано для проведения химических реакций, изменения кристаллической структуры твердых тел при высоком давлении и температуре, в частности для получения искусственных алмазов (алмазного порошка), для сжатия DT-льда с целью получения нейтронного источника, для осуществления инерциального термоядерного синтеза.

Изобретение относится к получению высокочистых активных алмазоуглеродных материалов, которые могут быть использованы при суперфинишном полировании, в гальванике и медицине.

Изобретение относится к физико-технологическим процессам обработки алмазосодержащих суспензий. Твердую углеродную массу, выделенную после завершения детонационного синтеза, обрабатывают в автоклаве водным раствором нитрата аммония с добавками азотной кислоты при температуре 200-260°С до прекращения газовыделения, при этом концентрация твердой фазы в суспензии составляет 5%, на 1 вес.ч.

Изобретение относится к области углеродных материалов и может быть использовано в электронной промышленности. Углеродные одномерные углеродные структуры фотонного типа получают пиролизом этанола при температуре 500-800°C с термоградиентом 50-100°С под давлением 1000-4000 атм в присутствии платинового катализатора в течение 72 ч и микрокристаллов алмаза в количесвте 9·10-6 об.%.
Наверх