Смеситель с двухфазным рабочим телом

Изобретение относится к технике распыливания жидкостей и организации процесса смешения топлива с окислителем (воздухом) и предназначено для получения мелкодисперсных двухфазных потоков и аэрозолей в широком диапазоне размеров капель 10-20 мкм. Смеситель с двухфазным рабочим телом содержит цилиндрическую камеру смешения с соплом на входе для подачи жидкости, отверстия в корпусе камеры смешения и выходное устройство для двухфазного потока с каналами для выхода двухфазного потока. Отверстия в корпусе камеры смешения расположены перпендикулярно оси камеры в плоскости выходного сечения сопла. Каналы выходного устройства имеют цилиндрическую форму и протяженность в диапазоне от 1 до 10 калибров и расположены параллельно оси камеры смешения либо под углом до 60° к оси камеры смешения. Объемная концентрация газа в камере смешения не должна быть меньше значения 0,5. Техническим результатом изобретения является формирование заданного поля концентрации двухфазного потока, обеспечение устойчивой работы смесителя, возможность регулирования в заданном диапазоне параметров (расходов и давлений фаз) и снижение гидравлического сопротивления. 4 ил.

 

Изобретение относится к технике распыливания жидкостей и организации процесса смешения топлива с окислителем (воздухом) и предназначено для получения мелкодисперсных двухфазных потоков и аэрозолей в широком диапазоне размеров капель 10-20 мкм.

Известна конструкция пневматической форсунки, содержащая корпус с соплом и коллектором для подвода жидкости и газа [Пажи Д.Г. Галустов B.C. Основы техники распыливания жидкости. М., Химия, 1984, с. 254]. Недостатком ее является неравномерность распределения концентрации компонентов по сечению и значительный расход газовой фазы.

Наиболее близкой к изобретению является пневматическая форсунка, содержащая корпус с соплом коллектором подачи жидкости и газа и установленный в корпусе проницаемый для жидкости и газа и пористый вкладыш [А.С. 897306, опубл. 15.01.82, Г. Базаров, В.И. Бирюков]. Недостатком ее является значительное гидравлическое сопротивление и трудность регулирования смеси по концентрации, приводящая к периодическим колебаниям в работе при увеличении содержания жидкости в смеси.

Целью изобретения является формирование заданного поля концентрации двухфазного потока обеспечение устойчивой работы смесителя, возможность регулирования в заданном диапазоне параметров (расходов и давлений фаз), и снижение гидравлического сопротивления.

Указанные цели достигаются тем, что в смесителе с двухфазным рабочим телом, содержащем цилиндрическую камеру смешения с соплом на входе для подачи жидкости, отверстия в корпусе камеры смешения, и выходного устройства для двухфазного потока с каналами для выхода двухфазного потока, согласно заявляемому изобретению, отверстия в корпусе камеры смешения расположены перпендикулярно оси камеры в плоскости выходного сечения сопла, каналы выходного устройства имеют цилиндрическую форму и протяженность в диапазоне от 1 до 10 калибров и расположены параллельно оси камеры смешения, либо под углом до 60° к оси камеры смешения, при этом объемная концентрация газа в камере смешения соответствует газокапельному режиму двухфазного потока, т.е. имеет значение больше 0,5.

На фиг. 1 показан продольный разрез смесителя, на фиг. 2 вариант выходного устройства с одним протяженным отверстием, на фиг. 3 вариант с несколькими отверстиями.

Смеситель включает камеру смешения 1, сопло 2 для подачи жидкости, отверстия 3 для подачи газа (воздуха) и выходное устройство 4. Оси камеры смешения сопла и выходного устройства совмещены между собой. Сопло 2 выполнено сужающимся в направлении потока жидкости. Отверстия 3 для газа, оси которых перпендикулярны оси камеры смешения, расположены в корпусе камеры смешения. Диаметр и количество отверстий 3, расположенных в одном или нескольких сечениях камеры смешения, выбирается исходя из требуемой концентрации и массового расхода жидкости. Диаметр цилиндрической камеры и длина камеры смешения 1 выбираются из условия, чтобы объемная концентрация газа соответствовала газокапельному режиму течения двухфазного потока, т.е. была бы больше значения 0.5, точнее 0,523. Это значение определяет допустимое значение объемной концентрации, которое может быть рассчитано, если полагать капли шарообразными с диаметром капель и рассматривать плотную упаковку Расчет объемной концентрации легко может быть определен на основе законов механики жидкости и газа.

Например, для расчета смесителя необходимо задать массу жидкости mк и mг массу газа, давление Р и температуру смеси Т.

Для определения объемной концентрации необходимо знать объемы фаз газа Vг и капель Vк в единицу времени. Тогда объемная концентрация газа объемы определяются ρк=const (4) плотность капель жидкости является константой, а плотность газа определяется по уравнению состояния где R - газовая постоянная. Площадь S сечения цилиндрической камеры определяется как где - площадь сечения, занимаемая газом, площадь сечения, занимаемая каплями. Здесь Wг и Wк скорости газа и капель. Выходное устройство 4, в зависимости от конкретной задачи (камера сгорания, химический реактор и т.п.), выполняются в виде цилиндрического канала различной протяженности, от 1 до 10 калибров диаметра, фиг. 2. Причем, выходное устройство может содержать несколько отверстий, как показано на фиг. 3. Их число и протяженность зависят от располагаемого давления и расхода жидкости и газа, а наклон к оси требованиями к полю концентрации на выходе из смесителя.

Смеситель работает следующим образом. В смеситель через входное сопло 2 (рис. 1) подается жидкость с давлением жидкости, обеспечивающим получение заданного расхода жидкости (и заданной скорости). Затем через отверстия 3 подается воздух с заданным расходом газа, который обеспечивает заданное значение объемной концентрации газа. Система выходит на заданный режим. Регулирование режима может производится как изменением подачи жидкости, так и изменением расхода газа.

Данный смеситель обеспечивает формирование поля концентрации на выходе, получение дисперсности капель в широком диапазоне размеров от 20 до 200 мкм использование одинакового давления для подачи жидкости и газа, возможность регулирования режим работы по концентрации и дисперсности капель и меньшем перепаде давления, чем у прототипа. Следует отметить, что смеситель имеет на выходе высокий уровень турбулентности, что улучшает перемешивание жидкости и газа. Кроме того, за счет газовой фазы жидкие капли получают дополнительное ускорение, так что их скорость превышает значение, определяемое перепадом давления.

Смеситель с двухфазным рабочим телом, содержащий цилиндрическую камеру смешения с соплом на входе для подачи жидкости, отверстия в корпусе камеры смешения и выходное устройство для двухфазного потока с каналами для выхода двухфазного потока, отличающийся тем, что отверстия в корпусе камеры смешения расположены перпендикулярно оси камеры в плоскости выходного сечения сопла, каналы выходного устройства имеют цилиндрическую форму и протяженность в диапазоне от 1 до 10 калибров и расположены параллельно оси камеры смешения либо под углом до 60° к оси камеры смешения, при этом объемная концентрация газа в камере смешения не должна быть меньше значения 0,5.



 

Похожие патенты:

Изобретение относится к средствам распыливания жидкостей и растворов и может применяться в двигателестроении, химической и пищевой промышленности. Вихревая форсунка содержит корпус со шнеком, соосно расположенным в нижней части корпуса, и расположенный в верхней части корпуса штуцер с цилиндрическим отверстием для подвода жидкости, соединенным с диффузором, осесимметричным корпусу и штуцеру.
Настоящее изобретение относится к способу для нанесения покрытия распылением на поверхности субстратов, в котором: (а) на первом этапе поддающееся термопластичной переработке вещество в экструдере расплавляют и тем самым разжижают, (b) на расплавленное вещество воздействуют давлением при помощи газа-носителя, (с) смесь, образующуюся из указанного расплавленного вещества и указанного газа-носителя, продавливают через одну или несколько форсунок, причем в зоне выходного отверстия форсунки к распыляемой струе подводят газ-распылитель, имеющий температуру, которая по меньшей мере столь же высока, как температура расплава, и (d) образующуюся распыляемую струю с расплавленным поддающимся термопластичной переработке веществом направляют на поверхность субстрата, причем вещество в форме капель в текучем состоянии попадает на поверхность субстрата, образует непрерывное покрытие на поверхности субстрата и затем затвердевает.

Изобретение относится к технике сушки дисперсных материалов и может быть использовано в микробиологической, пищевой, химической и других отраслях промышленности. Сушилка для растворов и суспензий содержит корпус, в котором расположена акустическая пневматическая форсунка для подачи высушиваемого материала, который распыляется под действием топочных газов с температурой до 900°C, образующиеся в процессе подсушки гранулы материала падают на газораспределительную решетку и досушиваются в кипящем слое, создаваемом теплоносителем, поступающим в нижнюю часть корпуса под решетку с температурой до 200°C, который поступает через нижнюю часть корпуса, отделенную от конической части корпуса газораспределительной решеткой посредством стакана с перфорированным дном, через которое поступает теплоноситель с температурой до 200°C, а теплоноситель удаляется через отверстия газораспределительной решетки в систему улавливания, состоящую из акустической установки, циклона и рукавного фильтра.

Изобретение относится к способу сушки растворов с получением гранулированного продукта, обладающего повышенной гигроскопичностью. Установка для сушки и прокалки катализатора содержит распылительную сушилку, предназначенную для сушки и грануляции катализатора из раствора.

Изобретение относится к устройствам распыления жидкостей для мокрой очистки газовых выбросов и может быть использовано в химической и нефтяной промышленности. Форсунка содержит цилиндрическую камеру 1 для подвода газа, осевой ороситель 3 с дроссельными отверстиями 6 для подвода жидкости и завихритель 8 газожидкостного потока.

Изобретение относится к технологии генерации газокапельных струй повышенной дальнобойности и может использоваться в противопожарной технике, в сельском хозяйстве при орошении земель и других отраслях, связанных с необходимостью создания дальнобойных газожидкостных струй.

Изобретение относится к средствам пожаротушения, в частности переносным (ранцевым) средствам пожаротушения. В мобильной установке пожаротушения двухфазный распылитель выполнен с корпусом, на цилиндрической части которого закреплена вихревая кольцевая камера с патрубком для подачи жидкости.

Настоящее изобретение относится к выдачному устройству для производства пены без необходимости использования сжиженного газа из выпускного отверстия. Выдачное устройство (20) для производства микропены включает резервуар (37) для раствора поверхностно-активного вещества, средство подачи газа (23), средство направления раствора поверхностно-активного вещества в резервуаре (37) и газа по пути потока к выпускному отверстию.

Изобретение относится к подготовке жидкого топлива к сжиганию и может быть использовано для утилизации жидких горючих отходов. Устройство содержит бак-ресивер (8), выполненный единым элементом.

Изобретение относится к способу изготовления вспененных формованных изделий, содержащему стадии А) предоставления формы и Б) введения пенообразующей реакционной смеси в форму с изменяемым давлением введения, при этом скорость на выходе вводимой на стадии Б) пенообразующей реакционной смеси составляет ≥ 1 м/с - ≤ 5 м/с, и давление введения на стадии Б) уменьшается в динамике по времени, и пенообразующая реакционная смесь имеет экспериментально определенное время схватывания при температуре 20°С, которое составляет ≥ 20 с - ≤ 60 с.

Изобретение относится к устройствам для распыления (распылительным насадкам) текучей среды и особенно к насадкам, используемым для ускорения потока воды. Распылительная насадка для текучей среды содержит удлиненный корпус с входным концом и выходным концом и образует проходящий в нем канал, при этом канал включает в себя входной канал и выходной канал, имеющий выходной диаметр, который является меньше, чем входной диаметр.

Изобретение относится к смешиванию веществ и может использоваться в биотехнологии и химии. Устройство для смешивания вещества включает в себя: два или более проточных каналов (11, 12, 13), в которых формируются отверстия (111, 121, 131), из которых выпускается наружу жидкость, колебательные устройства (112, 122, 132), которые формируют капли жидкости, выпускаемые из каждого отверстия (111, 121, 131) за счет колебаний, по меньшей мере, части проточных каналов, где находятся отверстия (111, 121, 131), на заданной частоте колебаний, и выпускают капли жидкости; а также средства, для того чтобы вызвать столкновение друг с другом капель (A, B, C) жидкости, выпускаемых из отверстий (111, 121, 131) проточных каналов (11, 12, 13).

Изобретение относится к области получения сферических порохов (СФП) для стрелкового оружия. Получение СФП со стабильными физико-химическими и баллистическими характеристиками достигается путем обеспечения смешения пара с водой в пароструйном обогревателе, из которого теплоноситель выходит со строго заданной температурой и подается в рубашку реактора.

Изобретение относится к способу изготовления многослойных панелей с заполнителем из газонаполненной пластмассы. .

Изобретение относится к перемешиванию жидких и порошкообразных веществ и может использоваться в химической, лакокрасочной, пищевой промышленности. .

Изобретение относится к устройству (1) для введения жидкости в сыпучие сухие вещества, прежде всего в муку для приготовления кляра. .

Манжета // 2126725
Изобретение относится к разделу(ам) промышленного изготовления устройств с возможностью экологической защиты окружающей среды от вытекания: воды, нефтепродуктов, щелочных и кислотных составов, используемых в замкнутом цикле технологического обеспечения; бытовой защиты и улучшения экологических свойств упомянутых жидких сред; в пищевой промышленности - для отбора магнитосодержащих включений из жидкого шоколада, молока, сливок, сметаны, пива и др.

Изобретение относится к устройствам для автоматического управления процесса ми химической и нефтехимической промышленности , в частности к устройствам для приготовления жидкой смеси, и позволяет расширить функциональные возможности за счет автоматического варьирования производительности по смеси с заданной концентрацией контролируемого компонента при приготовлении агрессивных, кристаллизующихся , вязких и т.п.
Изобретение относится к аппаратам для обработки суспензий, используемых в строительном производстве, и позволяет интенсифицировать процесс обработки суспензий. .

Изобретение относится к технике распыления жидкости и может быть использовано в противопожарной технике, в сельском хозяйстве, в устройствах химической технологии и в теплоэнергетике. Акустическая форсунка содержит полый корпус с соплом и центральным сердечником. Корпус выполнен с каналом для подвода жидкости и содержит соосную, жестко связанную с ним втулку с закрепленным в ее нижней части соплом, выполненным в виде цилиндрической двухступенчатой втулки. Верхняя цилиндрическая ступень втулки соединена посредством резьбового соединения с соосным с ней центральным сердечником, имеющим центральное отверстие и установленным с кольцевым зазором относительно внутренней поверхности цилиндрической втулки. Кольцевой зазор соединен по крайней мере с тремя радиальными каналами, выполненными в двухступенчатой втулке, соединяющими его с кольцевой полостью, образованной внутренней поверхностью втулки и внешней поверхностью верхней цилиндрической ступени. Кольцевая полость связана с каналом корпуса для подвода жидкости. К центральному сердечнику в его нижней части жестко прикреплен распылитель, выполненный в виде усеченного конуса, соосного центральному отверстию сердечника и прикрепленного своим верхним основанием к основанию цилиндра центрального сердечника. К нижнему основанию усеченного конуса посредством по крайней мере трех спиц прикреплен рассекатель, который выполнен в виде торцевой круглой пластины, края которой отогнуты в сторону кольцевого зазора. На внешней боковой поверхности усеченного конуса имеются винтовые канавки. В рассекателе осесимметрично центральному отверстию центрального сердечника выполнено дроссельное отверстие. К центральному сердечнику, жестко связанному с верхней цилиндрической ступенью двухступенчатой втулки сопла, соосно прикреплен внешний сплошной диффузор таким образом, чтобы не было перекрыто выходное сечение кольцевого зазора, соединенного по крайней мере с тремя радиальными каналами, выполненными в двухступенчатой втулке сопла. Техническим результатом изобретения является повышение эффективности мелкодисперсного распыливания жидкости. 3 з.п. ф-лы, 1 ил.
Наверх