Способ определения термического состояния рыбного сырья
Владельцы патента RU 2654359:
Федеральное государственное бюджетное научное учреждение "ВНИРО", ФГБНУ "ВНИРО" (RU)
Использование: для определения термического состояния рыбного сырья. Сущность изобретения заключается в том, что определение термического состояния рыбного сырья осуществляют путем идентификации свободной и связанной воды в мышечной ткани, включающим отбор образца, помещение его в темперируемую ячейку ядерного магнитного резонансного релаксометра, регистрацию сигналов протонной релаксации двух типов «быстрой» и «медленной» компоненты, и вычисление коэффициента релаксации, определяющего термическое состояние сырья, по формуле: Кр=Аб/Ам, где Аб – «быстрая» компонента, Ам – «медленная» компонента, при этом к охлажденному сырью относят рыбное сырье с коэффициентом (Кр)≥3,0, к мороженому - Кр≤2,5. Технический результат: обеспечение возможности получения достоверного, быстрого определения термического состояния рыбного сырья. 2 табл., 1 ил.
Изобретение относится к рыбной промышленности, а именно к исследованию рыбного сырья, в частности его термического состояния, как одной из характеристик, определяющей качество сырья, и для решения вопроса дальнейшего его использования.
Известен способ оценки качества продуктов животного и водного происхождения, заключающийся в особенностях проявления автолиза мышечной ткани вышеназванных объектов, происходящих в 3 стадии: периода набухания, постепенного развития окоченения и в разрешении окоченения, по которым судят о качестве продуктов и предельных сроках хранения, оцениваемых существующими химическими методами, согласно нормативно-технической документации, изменением ультраструктуры (Е.И. Скалинский, А.А. Белоусов Микроструктура мяса. - М.: Пищевая промышленность, 1978. - с. 174).
Известен способ оценки качества рыбы, включающий: 1) подготовку образцов и 2) процесс микроскопии мышечной ткани, отличающийся тем, что качество рыбы определяют по количественному одиночному критерию уровня деструкции мышечной ткани, который определяют путем наблюдений за ультраструктурными компонентами белковой и липидной природы, оценки уровня деструкции и вычисления суммарной оценки деструкции мышечной ткани с последующим ее уточнением после сопоставления с органолептическими и биохимическими данными (см. патент РФ №2138043, 1998 г. G01N 33/12).
Известен способ определения качества рыбы, при котором в качестве образца используют глазную жидкость рыбы. Согласно известному способу оценку качества мяса или рыбы определяют по коэффициенту преломления света в глазной жидкости с помощью, например, рефрактометра Аббе. Описанный метод не пригоден для определения качества рыбы, подвергшейся замораживанию и хранению в течение определенного времени (З. Сикорский Технология продуктов морского происхождения, М., Пищевая промышленность, 1974, с. 125-127).
Известные способы достигали определенных результатов.
Однако наиболее существенное влияние на формирование качества пищевых продуктов оказывает качество выловленного сырья, способы и условия его транспортировки и хранения до обработки. Необходимость применения специальных методик для определения и оценки степени свежести рыбного сырья обусловлено высокой скоростью его порчи и тем обстоятельством, что в большинстве случаев сырье транспортируют и хранят длительное время до обработки.
Одним из показателей качества рыбного сырья может быть одно из его свойств, в нашем случае термическое состояние - охлажденное, замороженное. Термическое состояние является первейшим и от него зависят дальнейшие качественные характеристики сырья.
Технической задачей настоящего изобретения является получение достоверного, быстрого способа определения термического состояния рыбного сырья, находящегося в живом, охлажденном и замороженном видах.
В результате осуществления способа и получения данных можно установить различие между охлажденным сырьем, размороженным или мороженным.
Эти данные позволяют установить качество рыбы, быстро определять свежесть сырья и дальнейшее его использование.
Поставленная задача решается в способе определения термического состояния рыбного сырья, путем идентификации свободной и связанной воды в мышечной ткани, включающем отбор образца, помещение его в ядерный магнитный резонансный релаксометр (ЯМР-релаксометрии), регистрацию сигналов протонной релаксации двух типов «быстрой» и «медленной» компоненты, и вычисление коэффициента релаксации, определяющего термическое состояние сырья, по формуле: Кр=Аб/Ам; где Аб – «быстрая» компонента, Ам – «медленная» компонента, при этом к охлажденному сырью относят рыбное сырье с коэффициентом (Кр)≥3,0, к мороженому - Кр≤2,5.
Идентификация свободной и связанной воды в мышечной ткани позволяет изучить водородные связи, определяющие структуру ассоциированных жидкостей и их аномальные физические свойства. Этот способ дает возможность охарактеризовать морфологию ткани, состояние белков и очень чувствителен к влиянию замораживая и условиям хранения, что, как известно, оказывает большое влияние на качество сырья.
Способ осуществляют следующим образом.
Для проведения исследований использовали образцы рыбного сырья, представленные в таблице 1.
Проведен анализ образцов различных видов рыбного сырья способом ЯМР-спектроскопии с использованием релаксометра «Bruker the minispec» (серия mq). Часть образцов хранилась в охлажденном виде, часть была заморожена при различных условиях, часть подвергалась размораживанию и повторному замораживанию.
Образцы помещались в ампулы. Регистрировалось время протонной релаксации Т2. Регистрировался сигнал протонов двух типов: «свободных» в составе жидкости в межклеточном пространстве и «связанных» в клетках.
Измерения проводились при температуре 4°C. Перед помещением в измерительную ячейку образцы в ампулах выдерживались в термостате при заданной температуре в течение 30 мин. После помещения в ячейку образцы выдерживались в течение 10 мин для стабилизации температуры. Для каждого образца проводилось по 3 параллельных измерения.
В результате каждого измерения регистрировалась релаксационная кривая двухкомпонентного экспоненциального спада, пример которой представлен на рисунке. Как указано выше, каждая компонента соответствует своему типу протонов в образцах.
Измеряют амплитуду сигнала «быстрой» компоненты (А21) и амплитуду сигнала «медленной» компоненты (А22). Единица измерения амплитуды сигнала - условные единицы (а.е.). Время релаксации «быстрой» компоненты лежало в пределах 40-60 мс (T21), «медленной» - в пределах 400-700 мс (Т22). Амплитуда сигнала «быстрой» компоненты (А21) в условных единицах (а.е.) во всех случаях превышала амплитуду сигнала «медленной» компоненты (А22).
По результатам измерений рассчитывают коэффициент релаксации как отношение амплитуды сигнала «быстрой» компоненты (A21) к амплитуде сигнала «медленной» компоненты (А22).
Расчет коэффициент релаксации проводят по формуле:
где: А21 - амплитуда сигнала «быстрой» компоненты при времени релаксации Т21; А22 - амплитуда сигнала «медленной» компоненты при времени релаксации Т22.
Значения коэффициента релаксации для образцов рыбного сырья представлены в таблице 2.
Установлено, что для образцов рыбного сырья охлажденных коэффициент релаксации превышает 3,0, в мороженых образцах его значение ниже 2,5.
Способ определения термического состояния рыбного сырья путем идентификации свободной и связанной воды в мышечной ткани, включающий отбор образца, помещение его в темперируемую ячейку ядерного магнитного резонансного релаксометра, регистрацию сигналов протонной релаксации двух типов «быстрой» и «медленной» компоненты и вычисление коэффициента релаксации, определяющего термическое состояние сырья, по формуле: Кр=Аб/Ам, где Аб – «быстрая» компонента, Ам – «медленная» компонента, при этом к охлажденному сырью относят рыбное сырье с коэффициентом (Кр)≥3,0, к мороженому - Кр≤2,5.