Способ защиты от средств фиксации теплового излучения и устройство защиты от средств фиксации теплового излучения

Группа изобретений относится к военной технике, а именно к средствам защиты от фиксации теплового излучения сторонними наблюдателями. Способ защиты от средств фиксации теплового излучения включает выполнение закрывающего источник тепла экрана с осуществлением поэтапного поглощения выделяемого теплового излучения, преобразования его в электрическую энергию, поступающую на дифференциальные термопары для последующего охлаждения посредством ее «холодных» концов атмосферного воздуха над экраном. В устройстве для защиты от средств фиксации теплового излучения экран выполнен в виде корпуса из соединенных с возможностью пространственного перемещения комплектов панелей из сетчатых параллельных полос, при этом между панелями размещен теплоизоляционный слой. Техническим результатом группы изобретений является обеспечение защиты от средств фиксации теплового излучения в полевых условиях. 2 н.п. ф-лы, 6 ил.

 

Изобретение относится к области военной техники как защита от выявления места расположения агрегатов оборонного назначения, выделяющих в процессе эксплуатации тепловую энергию (дизельные установки и т.д.), которая фиксируется сторонними наблюдателями из летательных аппаратов, использующих приборы для регистрации теплового излучения, например, тепловизоры.

Известен способ защиты оператора (см., а.с. СССР №1021866, Кл. F16P 1/02. Бюл. №21, опубл. 1983) путем установки защитного экрана, выполненного в виде установленных с зазором и жестко связанных в ряд пластин из сетки с высокой теплоотражающей способностью, расположенных в одной плоскости и перемещающихся со скоростью 30-50 колебаний в секунду с помощью вибратора.

Недостаткамим способа являются наличие в конструкции вибратора, что приводит к возникновению вибрации, повышенный нагрев экрана, а также недостаточный коэффициент теплозащиты и сложность сочетания вибрирующего экрана с другими средствами теплозащиты, например с остеклением.

Известен способ защиты от теплового излучения и устройство для его осуществления (см. а.с. СССР №1732112, МПК F16P 1/02, опубл. 07.05.1992, Бюл. №17), включающий выполнение защитного экрана между источником теплового излучения и защищаемым объектом, при этом полосы выполнены с возможностью фиксации их положения, а устройство содержит корпус, параллельно установленные в корпусе полосы, связанные между собой с возможностью вращения вокруг осей.

Недостатком является практическая невозможность использования защиты от фиксации излучения в полевых условиях нахождения военной техники, из-за сложного выполнения экрана, а также регистрируемого тепловизором его нагрева за счет теплоты трения при вращении теплоотражающих полос со скоростью 700-800 об/мин и, кроме того, наличия дополнительных энергозатрат на привод как вращения, так и передаточного механизма.

Технической задачей предлагаемого изобретения является устранение при эксплуатации военной техники в полевых условиях теплового излучения, фиксируемого сторонними наблюдателями, путем преобразования тепловой энергии, выделяемой источником тепла, в электрическую с последующим получением охлажденного атмосферного воздуха в зоне его контакта с защитным экраном, выполненным из параллельных сетчатых полос, соединенных попарно в панели, с расположенными на панелях дифференциальными термопарами, при этом в каждой панели первая по ходу поступления теплового излучения сетчатая полоса имеет материал с коэффициентом теплопроводности, в 2,0-2,5 раза превышающий коэффициент теплопроводности второй сетчатой полосы, а между панелями размещен теплоизоляционный материал.

Технический результат достигается тем, что способ защиты от средств фиксации излучения, включающий выполнение защитного экрана в виде параллельных полос, установку экрана над источником теплового излучения, при этом полосы выполнены с возможностью фиксации их положения, причем параллельные полосы соединены парами и выполнены с осуществлением первой относительно источника тепла парой поглощения теплового излучения и выработкой электрической энергии посредством расположенных на ней дифференциальных термопар, осуществляют при использовании электрической энергии, полученной на первой паре параллельных полос, охлаждение атмосферного воздуха, контактирующего с наружной стороной защитного экрана, размещенного над источником теплового излучения.

Устройство для защиты от средств фиксации теплового излучения, содержащее корпус, параллельно установленные в корпусе полосы, связанные между собой с возможностью вращения вокруг осей, причем полосы выполнены сетчатыми и соединены попарно в панели, в которых расположены дифференциальные термопары, причем в каждой панели первая по ходу поступления теплового излучения сетчатая полоса имеет материал с коэффициентом теплопроводности, в 2,0-2,5 раза превышающим коэффициент теплопроводности материала второй сетчатой полосы, при этом «горячие» концы дифференциальных термопар закреплены в ячейках сетчатой полосы из материала с более высоким коэффициентом теплопроводности, а «холодные» концы дифференциальной термопары закреплены в ячейках сетчатой полосы из материала с низким коэффициентом теплопроводности, кроме того, между панелями в корпусе размещен теплоизоляционный слой из материала с низким коэффициентом теплопроводности, кроме того, между панелями в корпусе размещен теплоизоляционный слой из материала с коэффициентом теплопроводности, превышающим в 2,0 раза коэффициент теплопроводности воздуха, находящегося между сетчатыми полосами панелей, кроме того, при наличии источника теплового излучения в виде дизельного агрегата установлено устройство для очистки выхлопных газов, включающее трубчатый элемент, состоящий из суживающейся части, закрепленной на выхлопной трубе коаксиально посредством ребер, выполненных как спиральные лопасти, расширяющейся части, расположенной за срезом выхлопной трубы, на внутренней поверхности которого продольно размещены винтообразные канавки с профилем «ласточкин хвост» и переходящих в круговую канавку, которая находится у выходного отверстия трубчатого элемента и соединена с устройством удаления загрязнений, причем кривизна спиральных лопастей имеет положительное направление вращения винтовой линии, а кривизна винтообразных канавок имеет отрицательное направление вращения.

На фиг. 1 изображено устройство для осуществления способа защиты от средств фиксации теплового излучения, общий вид, на фиг. 2 - элемент устройства в виде комплекта, включающий две сетчатые панели из параллельных полос с расположенными дифференциальными термопарами, на фиг. 3 - устройство для очистки выхлопных газов в виде трубчатого элемента; на фиг. 4 - расширяющаяся часть трубчатого элемента с криволинейной и круговой канавками, на фиг. 5 - расположение ребер-лопастей на внешней поверхности выхлопной трубы, на фиг. 6 - полость криволинейной канавки в виде «ласточкина хвоста».

Предлагаемый способ осуществляется путем установки над источником тепла экрана в виде корпуса из параллельных сетчатых полос с дифференциальными термопарами, которые обеспечивают поглощение теплового излучения, преобразования его в электрическую энергию с последующим охлаждением атмосферного воздуха над наружной поверхностью экрана.

Устройство для защиты от средств фиксации теплового излучения включает гибкий многослойный экран 1, покрывающий источник теплового излучения 2, т.е. источник тепла, например, дизельную установку, местонахождение которой может быть зафиксировано посредством тепловизора посторонним наблюдателем.

Экран 1 выполнен в виде корпуса 3 из ряда подвижно соединенных между собой втулками 4 с осями 5 комплектов 6, включающих по две панели 7, 8 с теплоизоляционным слоем 9, имеющим коэффициент теплопроводности в 2 и более раз большим значения для атмосферного воздуха, т.е. среды нахождения защищаемого источника тепла. Каждая панель 7 и 8 состоит из сетчатых полос 10 и 11, параллельно расположенных и соединенных между собой, при этом первая со стороны источника тепла сетчатая полоса 10 выполнена из материала с высоким коэффициентом теплопроводности λ=204 Вт/м.гр (см., например, стр. 312 Нащокин В.В. Техническая термодинамика и теплопередача. М., 1980, 469 с.) и вторая сетчатая полоса 11 с более низким коэффициентом теплопроводности, например (см. там же), латунь с λ=85 Вт/м.гр. Между сетчатыми полосами 10 и 11 расположены в воздушных прослойках 12 и 13 дифференциальные термопары 14 и 15 таким образом, что в ячейках 15 сетчатой полоски 10 и 11 закреплены (например, пайкой) «горячие» концы 17, а в ячейках 18 закреплены «холодные» концы 19 дифференциальных термопар 14 и 15. Кроме того, клеммы 20 для съема термоЭДС с дифференциальных термопар 14 электрически соединены с клеммами 21 для подвода электрической энергии (термоЭДС) к дифференциальным термопарам 15.

При наличии источника теплового излучения 2 в виде дизельного агрегата установлено устройство для очистки выхлопных газов 23, включающее трубчатый элемент 24, состоящий из суживающейся части 25, закрепленной на внешней поверхности 26 выхлопной трубы 22 коаксиально посредством ребер, выполненных как спиральные лопасти 27, расширяющейся части 28, расположенной за срезом выхлопной трубы 22 на внутренней поверхности 29 которой продольно размещены винтообразные канавки 30 с профилем «ласточкин хвост» 31 и переходящей в круговую канавку 32, которая находится у выходного отверстия 33 трубчатого элемента 24 и соединена с устройством удаления загрязнений 34. При этом кривизна спиральных лопастей 27 имеет положительное направление вращения винтовой линии (см., например, стр. 509 Выгодский М.Я. «Справочник по высшей математике», 1969, 872 с., ил.), а кривизна винтообразных канавок 30 имеет отрицательное направление вращения.

Защита от фиксации сторонними наблюдателями посредством тепловизоров теплового излучения от источников тепла, например, дизельной установки, обслуживающей военную технику на полигоне, осуществляется следующим образом.

Источник теплового излучения 1 накрывают экраном 2 посредством пространственного размещения корпуса 3 путем сбора комплектов 6 из панелей 7 и 8 с последующей их фиксацией в различных положениях от вертикального до горизонтального при помощи втулок 4 и осей 5.

В процессе эксплуатации поток энергии в виде теплового излучения перемещается через атмосферный воздух, находящийся между источником тепла 2 и экраном 1, и поглощается материалом-алюминием с высоким коэффициентом теплопроводности полосы 10, что приводит к ее интенсивному нагреву. Далее проходит частично оставшийся поток энергии теплового излучения через воздушную прослойку 12, где дополнительно рассеивается (λ=0,024 (Вт/м.гр) и контактирует с сетчатой полосой 11, выполненной из материала латунь с малым коэффициентом теплопроводности, и поэтому полоса 11 практически не нагревается. На теплоизоляционном слое 9, выполненном с коэффициентом теплопроводности λ=0,036-0,046 Вт/(м.гр) из витых пучков тепловолокнистого базальтового материала (см., например, стр. 36 «Волокнистые материалы из базальтов Украины». Киев: «Техника», 1971, 76 с., ил.), полностью гасится.

В результате закрепления «горячих» концов 17 в ячейках 16 нагретой до температуры, превышающей температуру атмосферного воздуха, сетчатой полосы 10 и закрепления «холодных» концов 19 в ячейках 18 с температурой, равной температуре атмосферного воздуха, в дифференциальной термопаре 14 панели 7 (вследствие образовавшейся разности температур) на клеммах 20 возникает термоЭДС. При использовании в дифференциальных термопарах 14 и 15 хромель-копеля тепловая энергия, сопутствующая тепловому излучению, эквивалентному работе дизельной мобильной установки, обеспечивает образование термоЭДС на каждом элементе до 6,96 мВ, что позволяет получать напряжения на клеммах от 20 до 36 В (см., например, Иванова Г.Н. Теплотехнические измерения и приборы. М.: Энергоатомиздат, 1984, 230 с., ил).

Полученный электрический потенциал с клеммы 20 съема термоЭДС с дифференциальной термопары 14 передается к электрически соединенной клемме 21 для подвода электрического потенциала (термоЭДС) к дифференциальной термопаре 15. В результате подачи электрического потенциала, полученного на дифференциальной термопаре 14, к дифференциальной термопаре 15 ее «холодные» концы 19 (закрепленные в ячейках 18 сетчатой полосы 11 панели 8) имеют температуру ниже температуры атмосферного воздуха, окружающего наружную поверхность экрана 1 (см., например, «Технические основы теплотехники. Технический экспериметн. Справочник/под общ. ред. В.М. Зорина. М., 1980,560 с., ил..

Следовательно, осуществляется охлаждение атмосферного воздуха, контактирующего с корпусом 3 экрана 1 со стороны панели 8, охлаждаемого «холодными» концами 19 дифференциальной термопары 15, укрепленными на сетчатой полосе 11. Это дополнительно повышает эффективность защиты от теплового излучения экраном 1 в связи с тем, что даже при наличии возможных неучтенных при эксплуатации дизельной установки утечек теплового излучения после панели 7 с дифференциальными термопарами 14 и теплоизоляционного слоя 9 охлажденный пограничный слой атмосферного воздуха, контактирующий с «холодными» концами 19 сетчатой полосы 11 панели 8, полностью нейтрализует корпусом 3 выделяемое в окружающую среду источником тепла 2 тепловое излучение.

Кроме того, размещение теплоизоляционного слоя 9 между панелями 7 и 8 с коэффициентом теплопроводности в 2,0 раза превышающим коэффициент теплопроводности воздушных прослоек 12 и 13 между полосами 10 и 11, обеспечивает поддержание регулярного режима нестационарной теплопроводности (см., например, стр. 90, В.П. Иссаченко и др. «Теплопередача» М.: Энергоиздат, 1981 - 416 с., ил.) как процесса нагрева полосы 10 панели 7 посредством поглощения теплового излучения о источника тепла 2, так и процесса охлаждения полосой 11 панели 8 закрепленными «холодными» концами 19 дифференциальной термопары 15, контактируемого атмосферного воздуха. Это обеспечивает при длительной эксплуатации надежность использования устройства для защиты от фиксации сторонними наблюдателями теплового излучения, путем нейтрализации его в полевых условиях нахождения военной техники с источником тепла.

При использовании источника теплового излучения 1 в виде дизельного агрегата отработанные газы на выходе выхлопной трубы 22 имеют температуру свыше 100°С и загружены продуктами сгорания как газообразными, так и твердыми частицами (см., например, Луканин В.Н., Шатров Н.Г. «Двигатели внутреннего сгорания». 3-е издание, переработ. М.: Высшая школа, 2007, 400 с., ил.). Это требует очистки перед выбросом в окружающую среду, находящуюся под экраном 2.

Расположение за срезом (на выходе) выхлопной трубы 22 расширяющейся части 28 трубчатого элемента 24 способствует увеличению скорости выхода отработанных газов с образованием в суживающейся части 25 разрежения, которое приводит к поступлению атмосферного воздуха, контактирующего с источником теплового излучения 1. В результате наблюдается перемещение потока атмосферного воздуха ребрам, выполненным как спиральные полости 27, которые имеют положительное направление вращения винтовой линии, и вращающийся против хода часовой стрелки воздушный поток смешивается с отработанными газами, выходящими из выхлопной трубы 22, и вместе они поступают во вращающемся состоянии в расширяющуюся часть трубчатого элемента 24.

В расширяющейся части 28 трубчатого элемента 24 смесь из воздушного потока и отработанных газов с загрязнениями перемещается по продольно расположенным винтообразным канавкам 30, кривизна которых имеет отрицательное направление вращения винтовой линии. В результате наблюдается вращение смеси (отработанных газов с загрязнениями и воздушного потока) по часовой стрелке. В процессе вращения загрязнения в виде твердых (сажа, окалина) и каплеобразных частиц (атмосферная и технологическая влага) отбрасывается под действием центробежных сил к внутренней поверхности 29 расширяющейся части 28, где проникает в полости в виде «ласточкина хвоста» 31 продольно расположенных винтообразных канавок 30, кривизна которых имеет отрицательное направление вращения винтовой линии.

Выполнение профиля винтообразных канавок 30 в виде «ласточкина хвоста» предотвращает самопроизвольное выпадение загрязнений из полости 31, здесь загрязнения по мере накопления коагулируют, слипаются и перемещаются по направлению движения выхлопных газов к круговой канавке 32, где и продолжают накапливаться. По мере накопления загрязнений в круговой канавке 32 они из нее удаляются вручную или автоматически (на фигуре не показано).

При контакте вращающегося против часовой стрелки воздушного потока, выходящего из суживающейся части 25, с вращающейся по часовой стрелке смесью (воздушный поток и отработанные газы), выбрасываемой из расширяющейся части 28, наблюдаются микрозавихрения, которые образуют за срезом выхлопной трубы 22 зону разрежения (см., например, Меркулов В.П. Вихревой эффект и его применение в технике. Самара, 2002, 347 с., ил.). В результате наличия зоны разряжения, наряду со смешиванием с атмосферным воздухом отработанных газов и последующей очисткой, осуществляется более интенсивный отсос отработанных газов, а это в конечном итоге повышает мощность дизельного агрегата.

Оригинальность предлагаемого изобретения заключается в том, что способ защиты от средств фиксации теплового излучения, фиксируемого сторонним наблюдателем посредством тепловизора, включает выполнение экрана, закрывающего источник тепла с осуществлением поэтапного поглощения выделяемого теплового излучения, преобразования его в электрическую энергию, которая поступает на дифференциальные тепмопары для последующего охлаждения посредством ее «холодных» концов атмосферного воздуха над экраном. Кроме того, в устройстве для защиты от средств фиксации теплового излучения экран выполнен в виде корпуса из соединенных с возможностью пространственного перемещения комплектов панелей из сетчатых параллельных полос, материал которых имеет коэффициент теплопроводности, отличающийся в 2,0-2,5 раза, с зацепленными на каждой панели дифференциальных термопар, при этом между панелями размещен теплоизоляционный слой для поддержания регулярного режима нестационарной теплопроводности процесса нагрева и охлаждения элементов экрана.

1. Способ защиты от средств фиксации теплового излучения, включающий выполнение защитного экрана в виде параллельных полос, установку экрана над источником теплового излучения, при этом полосы выполнены с возможностью фиксации их положения, причем параллельные полосы соединены парами и выполнены с осуществлением первой относительно источника тепла парой поглощения теплового излучения и выработкой электрической энергии посредством расположенных на ней дифференциальных термопар, осуществляют при использовании электрической энергии, полученной на первой паре параллельных полос, охлаждение атмосферного воздуха, контактирующего с наружной стороной защитного экрана, размещенного над источником теплового излучения.

2. Устройство для защиты от средств фиксации теплового излучения, содержащее корпус, параллельно установленные в корпусе полосы, связанные между собой с возможностью вращения вокруг осей, причем полосы выполнены сетчатыми и соединены попарно в панели, в которых расположены дифференциальные термопары, причем в каждой панели первая по ходу поступления теплового излучения сетчатая полоса имеет материал с коэффициентом теплопроводности, в 2,0-2,5 раза превышающим коэффициент теплопроводности материала второй сетчатой полосы, при этом «горячие» концы дифференциальных термопар закреплены в ячейках сетчатой полосы из материала с более высоким коэффициентом теплопроводности, а «холодные» концы дифференциальной термопары закреплены в ячейках сетчатой полосы из материала с низким коэффициентом теплопроводности, кроме того, между панелями в корпусе размещен теплоизоляционный слой из материала с низким коэффициентом теплопроводности, кроме того, между панелями в корпусе размещен теплоизоляционный слой из материала с коэффициентом теплопроводности, превышающим в 2,0 раза коэффициент теплопроводности воздуха, находящегося между сетчатыми полосами панелей, кроме того, при наличии источника теплового излучения в виде дизельного агрегата установлено устройство для очистки выхлопных газов, включающее трубчатый элемент, состоящий из суживающейся части, закрепленной на выхлопной трубе коаксиально посредством ребер, выполненных как спиральные лопасти, расширяющейся части, расположенной за срезом выхлопной трубы, на внутренней поверхности которого продольно размещены винтообразные канавки с профилем «ласточкин хвост» и переходящих в круговую канавку, которая находится у выходного отверстия трубчатого элемента и соединена с устройством удаления загрязнений, причем кривизна спиральных лопастей имеет положительное направление вращения винтовой линии, а кривизна винтообразных канавок имеет отрицательное направление вращения.



 

Похожие патенты:

Изобретение относится к поворачиваемому теплообменнику. Рабочее транспортное средство имеет основание, опору, шарнирно прикрепленную к основанию для поворота относительно основания вокруг первой оси поворота между первым опорным положением и вторым опорным положением, и теплообменник.

Изобретение относится к теплотехнике и может быть использовано в теплообменниках и реакторах кожухотрубчатой конструкции. В теплообменник, состоящий из корпуса, трубных решеток, перегородок и труб, трубы установлены с предварительным прогибом, при этом предварительный прогиб осуществляется за счет смещения отверстий для труб в перегородках или за счет смещения перегородок механизмом перемещения, а перегородки установлены с возможностью смещения в направлении предварительного смещения, причем перегородки в средней части теплообменника установлены неподвижно со смещением отверстий для труб, а корпус может быть выполнен с прогибом.

Изобретение относится к теплообменным аппаратам и может быть использовано в химической и энергетической промышленности, например, при изготовлении подогревателей питательной воды высокого давления в производстве синтеза аммиака.

Теплообменник включает в себя первый проточный канал для охлаждающей жидкости двигателя, второй проточный канал для моторного масла, третий проточный канал для трансмиссионного масла и несколько пластин, которые разделяют первый, второй и третий проточные каналы.

Изобретение относится к теплотехнике и может быть использовано в замкнутых, не сообщающихся с внешней средой, системах охлаждения электрических машин и трансформаторов.

Изобретение относится к теплотехнике и может быть использовано в системах теплообменников с воздушным охлаждением. Система (1) теплообменника с воздушным охлаждением содержит входную магистраль (6), содержащую множество входных ответвительных труб (18), отходящих от нее, теплообменник (4), соединенный с выходным концом каждой из ответвительных труб и содержащий впускной коллектор (31), помещенный на раму основания с возможностью перемещения, выпускной коллектор и множество труб (34) теплопереноса, соединяющих эти два коллектора, и соединительный элемент (41, 75), соединяющий каждую соседнюю пару впускных коллекторов.

Изобретение относится к области теплотехники и может быть использовано при монтаже на теплообменниках автотранспортных средств. Способ монтажа воздуховода (2) по меньшей мере на одном теплообменнике (3), включающий в себя этап позиционирования воздуховода относительно указанного по меньшей мере одного теплообменника посредством поступательного перемещения воздуховода относительно указанного по меньшей мере одного теплообменника в первом направлении (91), по существу перпендикулярном к второму направлению (92), в котором воздушный поток должен проходить через указанный по меньшей мере один теплообменник, затем этап вращения или поворота воздуховода относительно указанного по меньшей мере одного теплообменника вокруг оси, определенной третьим направлением (93), по меньшей мере, по существу перпендикулярным к первому направлению и ко второму направлению.

Изобретение относится к области машиностроения и может быть использовано в двигателях внутреннего сгорания. Предложен жидкостной охладитель наддувочного воздуха в двигателях внутреннего сгорания, содержащий водовоздушный теплообменник, жидкостной насос и радиатор охлаждения, также в состав устройства введена рубашка охлаждения, выполненная вокруг впускного коллектора и его трубопроводов в виде полости с впускным и выпускным патрубками, посредством которых полость соединяют с подводящим и отводящим коллекторами холодного контура системы охлаждения, а последние последовательно подсоединяют к радиатору охлаждения и жидкостному насосу соответственно.

Изобретение применимо особенно при изготовлении электрических нагревательных приборов, в частности конвекторов, радиаторов и прочих излучающих приборов, и относится к угловому элементу лицевой стороны металлического корпуса.

Изобретение относится к области теплотехники и используется в конструкции поперечной перегородки для дистанцирования трубок кожухотрубного аппарата. Перегородка содержит верхние и нижние пластины 1, 2, цилиндрические втулки 3 и периферийное кольцо 4.

Изобретение относится к теплопередающей трубе и крекинг-печи с использованием теплопередающей трубы. Теплопередающая труба содержит закрученную перегородку, расположенную на внутренней стенке трубы, причем закрученная перегородка простирается спирально вдоль осевого направления теплопередающей трубы.

Изобретение относится к области электроники, в частности к испарительным системам охлаждения электронного и микроэлектронного оборудования, таким, как микроканальные теплообменники и тепловые трубы, которые обеспечивают высокие значения коэффициента теплопередачи в высоконапряженных по тепловым потокам мини- и микросистемах.

Радиатор // 2634167
Изобретение относится к области теплотехники и может быть использовано для охлаждения теплонагруженных элементов электронных компонентов, силовых и коммутационных устройств, транзисторных модулей, электроприборов.

Изобретение относится к изготовлению теплоизлучающих элементов. Способ включает размещение сетки на основе, изготовленной из первого металлического материала, и формирование на поверхности основы теплоизлучающей ячейки либо путем распыления гранулированных частиц, полученных из второго металлического материала, оксид которого имеет коэффициент отражения 70% и более, отличного от первого металлического материала, и частиц из оксида второго металлического материала, либо путем напыления металлических частиц, изготовленных из второго металлического материала, и их окисления, при этом формирование осуществляют таким образом, что зона контакта ячейки с основой составляет 1 мм2 и менее, после чего сетку удаляют.

Изобретение предназначено для осуществления реакций парового риформинга и может быть использовано в химической промышленности. Теплообменный реактор содержит множество байонетных труб (4), подвешенных к верхнему своду (2), простирающихся до уровня нижнего дна (3) и заключенных в кожух (1), содержащий впускной (Е) и выпускной (S) патрубки для дымовых газов.

Изобретение относится к теплообменным устройствам и может быть использовано в энергетике и транспорте. Теплообменник содержит две коаксиально расположенные трубы, внутренняя из которых состоит из чередующихся конфузорных и диффузорных элементов, выполненных в виде боковых поверхностей усеченных конусов различной длины, соединенных между собой периметрами малых и больших оснований этих конусов, на внешней стороне которых в кольцевом канале, образованном наружными боковыми поверхностями конусов и внутренней поверхностью наружной трубы теплообменника, находится тканая металлическая сетка, выполненная из проволок диаметром не более 2 мм, расположенная на среднем расстоянии не более 2 мм от наружной поверхности усеченных конусов внутренней трубы.

Изобретение относится к области теплообменных аппаратов, в частности к системам охлаждения электрогенераторов вспомогательных газотурбинных силовых установок, применяемым в авиационных двигателях, а также в стационарных мини-электростанциях.

Изобретение относится к способам интенсификации теплообмена жидкости с гладкой поверхностью и может быть использовано при изготовлении систем охлаждения гладкой поверхности, в частности, при изготовлении систем охлаждения микроэлектронного оборудования.

Изобретение относится к теплотехнике, а именно к материалу, излучающая/поглощающая способность которого близка к излучающей/поглощающей способности абсолютно черного тела.

Изобретение относится к области теплотехники и может быть использовано для отвода тепловой энергии (или тепла), выделяемой в оборудовании каким-либо источником тепла (например, электронной схемой или электронным компонентом).

Изобретение относится к звукоизоляции оборудования средствами широкополосного шумоглушения. Звукоизолирующий кожух, охватывающий технологическое оборудование, которое установлено на перекрытии здания посредством, по крайней мере, четырех виброизолирующих опор, выполненных из упругого материала, облицован с внутренней стороны звукопоглощающим элементом и имеет форму прямоугольного параллелепипеда с вырезом в его нижней грани под основание технологического оборудования.
Наверх