Способ получения изотропного кокса

Изобретение относится к области нефтепереработки, в частности к производству изотропного кокса в кубах периодического действия. Способ заключается в том, что от тяжелой смолы пиролиза отгоняют легкокипящие фракции до образования мягкого пека с температурой размягчения 30-80°C по КиШ, который смешивают с техническим углеродом, содержание которого составляет 2-10% от смеси. Полученную смесь обрабатывают в дезинтеграторе с получением однородной седиментационно-устойчивой дисперсии, которую в качестве сырья коксования подвергают коксованию в кубах периодического действия. Технический результат - повышение однородности структурной организации изотропного кокса. 1 з.п. ф-лы, 5 ил., 2 табл., 5 пр.

 

Изобретение относится к области нефтепереработки, в частности к производству изотропного кокса, используемого для производства углеродных конструкционных материалов.

Известен способ получения изотропного кокса, в соответствии с которым малосернистые керосино-газойлевые фракции прямогонного или вторичного происхождения подвергаются пиролизу с реакционной камерой с получением гидравличной смолы, которую подвергают коксованию в кубах периодического действия с получением изотропного кокса типа КНПС в соответствии с ГОСТ 22898-78 и дистиллятов коксования [Сабаненков С.А., Рабинович И.С., Селиверстов М.Н. Производство, свойства и применение нефтяного пиролизного кокса: тематический обзор. Серия переработка нефти. Вып. 9, ЦНИИТЭнефтехим. - М., 1989, с. 43-66].

Недостатком данного способа является его низкая экономическая эффективность: в процессе пиролиза получают большое количество углеводородного газа (до 40% и выше на исходное сырье), не находящего квалифицированного применения, низкий выход кокса, большие выбросы в атмосферу продуктов сгорания, образующихся при выжиге реакционных камер.

Основным условием возможности получения кокса с изотропной структурой из получаемых при пиролизе гидравличных смол является высокая ароматичность смолы, низкое содержание серы и содержание в смоле определенного количества нерастворимых в бензоле (толуоле) веществ (карбоидов). Степень анизотропности или изотропности коксов оценивается в баллах по ГОСТ 26132-84. Как показали многочисленные исследования, именно высокая ароматичность гидравличной смолы и наличие в ней определенного количества карбоидных частиц предопределяет получение нефтяного кокса именно с изотропной структурой с оценкой микроструктуры 1,9-2,1 балла.

Наиболее близким к заявляемому объекту является способ получения изотропного кокса, по которому высокоароматизированную тяжелую смолу пиролиза от производства моноолефинов смешивают с техническим углеродом (сажей), полученную дисперсию коксуют в кубах периодического действия и получают нефтяной кокс со структурной организацией, близкой к изотропному [Запорин В.П., Сухов С.В. и др. Новые технологии получения изотропного кокса типа КНПС. Сб. научных трудов: «Современные проблемы производства и эксплуатации углеродной продукции»: Челябинск, 2000, с. 75-78].

Недостатком данного способа является неоднородность структуры получаемого кокса. Дело в том, что при коксовании тяжелой смолы пиролиза в чистом виде, без добавки технического углерода, получается нефтяной кокс с оценкой микроструктуры, близкой к 5 баллам, что соответствует структуре, в большей степени приближающейся к анизотропной структуре. При добавлении в исходную смолу технического углерода (сажи), микроструктурная организация коксов меняется и включает как полностью изотропные, так и приближающиеся к анизотропной структурные составляющие, тем не менее, средняя оценка микроструктурной организации кокса характеризуется 2÷2,5 баллами. Неоднородность структурной организации нефтяного кокса, получаемого из дисперсии технического углерода в тяжелой смоле пиролиза, объясняется низкой седиментационной устойчивостью дисперсии вследствие ее низкой вязкости из-за наличия в исходной смоле большого количества (20-40%) легкокипящих фракций, выкипающих до 230-250°С.

Изобретение направлено на повышение однородности структурной организации изотропного кокса, получаемого в кубах периодического действия.

Это достигается тем, что в способе получения изотропного кокса путем переработки тяжелой смолы пиролиза и технического углерода, включающем коксование сырья в кубе периодического действия с получением изотропного кокса и дистиллятов коксования, согласно изобретению от тяжелой смолы пиролиза отгоняют легкокипящие фракции до образования мягкого пека с температурой размягчения 30-80°С по КиШ, который смешивают с техническим углеродом, после чего полученную смесь обрабатывают в дезинтеграторе с получением однородной седиментационно-устойчивой дисперсии, которую используют в качестве сырья коксования.

Содержание технического углерода составляет 2-10% от смеси.

Отогнав фракционированием из исходной смолы пиролиза легкокипящие фракции с получением мягкого пека с температурой размягчения 30-80°С по КиШ, т.е. с определенной вязкостью, создается возможность равномерного распределения в мягком пеке технического углерода в количестве 2-10% от смеси с формированием сырья коксования в виде седиментационно-устойчивой дисперсии. Вследствие низкой скорости изменения вязкости при коксовании седиментационно-устойчивой дисперсии образуется кокс с более однородной структурной организацией, чем в способе по наиболее близкому аналогу.

При увеличении количества вводимого в мягкий пек технического углерода с 4% до 8% в коксе уменьшается доля микроструктурных составляющих, оцениваемых 1 баллом, и исчезают микроструктуры, оцениваемые 4 и 5 баллами. При увеличении температуры размягчения мягкого пека с 30°C до 80°C при равном количестве вводимого технического углерода, аналогично, уменьшается доля микроструктурных составляющих, оцениваемых 1 и 4 баллами.

Способ осуществляют следующим образом.

Тяжелую смолу пиролиза с температурой начала кипения примерно 200°C подвергают фракционированию в ректификационной колонне, с верха которой выводят легкокипящие фракции смолы пиролиза, а с низа - мягкий пек с температурой размягчения по КиШ 30-80°C. Полученный мягкий пек смешивают в смесителе с техническим углеродом в количестве 2-10% масс. от смеси с использованием, например, диспергатора и обрабатывают в дезинтеграторе до состояния гомогенизации и образования седиментационно-устойчивой дисперсии. Полученную дисперсию подвергают коксованию в кубах периодического действия при температуре 400-600°C с получением изотропного кокса и дистиллятов коксования.

Способ-прототип и предлагаемый способ иллюстрируются примерами, в которых была использована тяжелая смола пиролиза, характеристика которой приведена в таблице 1.

Пример 1 (по способу-прототипу)

Тяжелую смолу пиролиза (ТСП) смешали с техническим углеродом в количестве 4,0% масс. от смеси при помощи диспергатора. Полученную дисперсию подвергали коксованию в кубе периодического действия при 500°C с получением углеводородного газа, дистиллята коксования и нефтяного кокса.

Пример 2 (по предлагаемому способу)

Тяжелая смола пиролиза подвергалась фракционированию с получением мягкого пека с температурой размягчения по КиШ 38°C, в который добавили технический углерод в количестве 4,0% масс. от смеси и тщательно перемешали при помощи диспергатора. Полученную смесь подвергали обработке в дезинтеграторе до образования однородной седиментационно-устойчивой дисперсии, которую подвергали коксованию в кубе периодического действия при той же температуре, что и в примере 1.

Примеры 3-5 (по предлагаемому способу)

Тяжелая смола пиролиза подвергалась фракционированию аналогично примеру 2 с той разницей, что получали мягкий пек с другими значениями температуры размягчения и/или изменяли количество технического углерода, смешиваемого с полученным мягким пеком.

Из полученных по каждому из примеров 1-5 коксов готовилась средняя проба. Из средних проб по ГОСТ 26132-84 были подготовлены шлифы-штабики, построены гистограммы для оценки однородности кокса и определения преобладающей структурной составляющей.

Кроме того, каждая средняя проба оценивалась на соответствие требованиям ГОСТ 22898-78 к коксу КНПС по действительной плотности и содержанию серы.

Температура размягчения по КиШ мягких пеков, полученных из ТСП по примерам 2-5, и содержание технического углерода в смеси, а также результаты анализов полученных коксов по примерам 1-5 сведены в таблицу 2.

На фиг. 1 приведена гистограмма распределения структурных составляющих полученного кокса по примеру 1 (по прототипу).

На фиг. 2-5 - приведены гистограммы распределения структурных составляющих полученных предлагаемым способом коксов по примерам 2-5 соответственно.

Из фиг. 1 видно, что при средней оценке микроструктуры 2,0 балла, что соответствует нормативным требованиям к изотропному коксу, микроструктурная организация кокса крайне неоднородна: имеется большое количество микроструктур, оцениваемых 1 баллом, что характерно для полностью изотропного кокса с низкой графитируемостью, и присутствуют микроструктуры, оцениваемые 5 баллами, что характерно для хорошо графитирующегося анизотропного (игольчатого) кокса. Неоднородность микроструктурной организации кокса объясняется низкой седиментационной устойчивостью полученной дисперсии технического углерода в исходной маловязкой тяжелой смоле пиролиза.

Эксперименты показали, что при нагреве дисперсии в процессе коксования, несмотря даже на ее обработку в дезинтеграторе, где происходит не только равномерное диспергирование технического углерода в смоле пиролиза, но и дополнительное переизмельчение, технический углерод все-таки оседает на дно куба, где образуется изотропный кокс, оцениваемый 1 баллом, в то время как в верхних слоях куба, где коксуется смола с низким содержанием технического углерода, образуется кокс с анизотропной структурой, оцениваемой 4 и 5 баллами.

Из фиг. 2-5 следует, что при средней оценке микроструктуры 2,1 балла (пример 2), 2,2 балла (пример 3), 2,0 балла (примеры 4 и 5), соответствующих нормативным требованиям к изотропному коксу, микроструктурная организация кокса более однородна: в примере 2 преобладающее количество микроструктур, оценивается 1 баллом и присутствуют микроструктуры с оценками 2, 3 и 4 балла; в примерах 3 и 4 в основном присутствуют 1-3 балльные микроструктуры; по примеру 5 получен кокс, практически полностью оцениваемый в 2 балла. Во всех коксах, полученных по примерам 2-5, отсутствуют микроструктуры, оцениваемые 5 баллами, а микроструктуры, оцениваемые 4 баллами, имеются в коксах, полученных по примерам 2 и 3.

Изложенное свидетельствует о том, что полученные по примерам 2-5 изотропные коксы имеют более однородную микроструктурную организацию, чем изотропный кокс, полученный по примеру 1 (прототипу).

Кроме того, из таблицы 2 видно, что все коксы по примерам 1-5 соответствуют требованиям ГОСТ 22898-78 к коксу КНПС по действительной плотности и содержанию серы.

Таким образом, использование предлагаемого способа по сравнению с прототипом обеспечит получение изотропного кокса с более однородной структурной организацией. Это обеспечивается за счет формирования сырья коксования в виде седиментационно-устойчивой дисперсии, по объему которой равномерно распределены частицы технического углерода.

1. Способ получения изотропного кокса путем переработки тяжелой смолы пиролиза и технического углерода, включающий коксование сырья в кубе периодического действия с получением изотропного кокса и дистиллятов коксования, отличающийся тем, что от тяжелой смолы пиролиза отгоняют легкокипящие фракции до образования мягкого пека с температурой размягчения 30-80°С по КиШ, который смешивают с техническим углеродом, после чего полученную смесь обрабатывают в дезинтеграторе с получением однородной седиментационно-устойчивой дисперсии, которую используют в качестве сырья коксования.

2. Способ по п. 1, отличающийся тем, что содержание технического углерода составляет 2-10% от смеси.



 

Похожие патенты:

Изобретение относится к способам получения низкосернистого нефтяного кокса замедленным коксованием и может быть использовано в нефтеперерабатывающей промышленности.

Изобретение относится к коксохимической промышленности, а именно к получению металлургического кокса из шихты. Нефтяная коксующая добавка состоит из продукта замедленного полукоксования тяжелых нефтяных остатков, полученного путем выдержки в течение 14-24 часов при температуре 450-500°C при коэффициенте рециркуляции в камере коксования от 1,05 до 1,2, характеризуется содержанием летучих веществ от 14 до 28% и коксуемостью по Грей-Кингу не ниже индекса G.

Изобретение относится к способам замедленного коксования нефтяных остатков и может быть использовано в нефтеперерабатывающей промышленности. Способ замедленного коксования нефтяных остатков включает предварительный нагрев исходного сырья, подачу его на смешение с разбавителем в отдельной смесительной емкости, вторичный нагрев смеси до температуры коксования.

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности и может быть использовано для разделения продуктов коксования из коксовых камер установок замедленного коксования методом ректификации.

Изобретение раскрывает способ получения кокса, содержащий этапы, на которых нагревают коксующийся материал до температуры коксования для получения нагретого коксующегося материала; подают нагретый коксующийся материал в коксовый барабан; вводят коксующую добавку, содержащую, по меньшей мере, один катализатор гидроконверсии или гидрокрекинга, в коксовый барабан, причем коксующую добавку диспергируют в нижнюю часть коксового барабана, проводят термический крекинг нагретого коксующегося материала в коксовом барабане для крекинга части коксующегося материала для получения крекированного парового продукта и кокса.

Изобретение относится к нефтепереработке и может быть использовано при получении нефтяного кокса из тяжелых нефтяных остатков. Установка коксования нефтяных остатков включает реакторы 6 с линиями ввода вторичного сырья из трубчатой печи 1 и вывода парогазовых продуктов коксования и ректификационную колонну, оснащенную линиями вывода дистиллятных продуктов коксования и вторичного сырья.

Изобретение относится к области нефтепереработки, в частности к получению высококачественного нефтяного игольчатого кокса. Способ включает смешивание в промежуточной емкости тяжелого газойля каталитического крекинга с рециркулятом с образованием вторичного сырья, нагрев вторичного сырья, подачу его в камеру коксования при температуре коксования и коксование с получением кокса и дистиллята коксования, который подают в нижнюю часть ректификационной колонны на фракционирование.

Изобретение относится к нефтеперерабатывающей промышленности, в частности к способу улавливания вредных выбросов из реакторов замедленного коксования нефтяных остатков.

Изобретение относится к области коксохимии. В процессе замедленного коксования дистиллятных и остаточных продуктов переработки нефти получают добавку коксующую.

Изобретение относится к нефтеперерабатывающей промышленности и может быть использовано для улавливания вредных выбросов из реакторов замедленного коксования нефтяных остатков.
Наверх