Способ термообработки листов из сплавов системы mn-cu

Настоящее изобретение относится к области металлургии, а именно термической обработке конструкционных демпфирующих сплавов системы Mn-Cu. Способ термической обработки листов из сплавов системы Mn-Cu для восстановления их демпфирующей способности включает нагрев при температуре 150-400°С, выдержку не менее 525 с на 1 мм толщины листа и охлаждение со скоростью не менее 2°С/с. Изобретение направлено на увеличение эффективности восстановления демпфирующей способности сплавов Mn-Cu с содержанием Mn 36-80% после вылеживания и/или деформации. 3 табл., 3 пр.

 

Настоящее изобретение относится к области металлургии, а именно термической обработке конструкционных демпфирующих сплавов системы Mn-Cu, позволяющей восстанавливать функциональные свойства (демпфирующую способность) этих сплавов после пластической деформации и вылеживания.

Известен способ-аналог восстановления демпфирующей способности сплава Г75Д25 (Сплавы системы Mn-Cu. Структура и свойства: Монография / Удовенко В.А., Маркова Г.В., Ростовцев Р.Н. - Тула: Гриф и К, 2005. - 152 с.), включающий нагрев до температуры 400 К (~127°С) и выдержку в течение одного часа, при которой происходит полное восстановление демпфирующей способности.

Недостатком этого способа является то, что нагрев до температуры выдержки 400 К (~127°С) производили в лабораторных условиях и полное восстановление демпфирующей способности фиксировали только у сплава указанного состава.

Наиболее близким по технической сущности по сравнению с предлагаемым способом является способ восстановления физико-механических свойств металла (Пат. РФ 2084544, МПК8 C21D 1/78 Способ восстановления физико-механических свойств металла корпуса реактора. Опубл. 20.07.1997), заключающийся в нагреве металла при температуре Тн=(0,3-0,4)Тпл, где Тпл - температура плавления восстанавливаемого металла, выдержке при этой температуре, достаточной для диффузии примесных элементов, и дополнительным созданием с помощью терморадиационных электронагревателей и охлаждения воздухом перемещающихся по объему металла градиентов температурного поля - направленное перемещение примесей по объему металла до момента уменьшения локальных концентраций примесей, усреднения их по объему восстанавливаемого металла до допускаемых значений, и создают зоны сжатия, через которые пропускают электрический ток.

Недостатком способа-прототипа является трудоемкость и сложность реализации за счет необходимости использования дополнительных устройств, которые могли бы обеспечить создание градиентов температурного поля по объему металла и прямое пропускание электрического тока.

Технический результат предлагаемого изобретения заключается в снижении трудоемкости и ускорении способа восстановления высокого уровня функциональных свойств изделий или деталей из сплавов Mn-Cu после пластической деформации и/или длительного их хранения.

Указанный технический результат достигается за счет того, что способ термической обработки листов из сплавов системы Mn-Cu включает восстановление демпфирующей способности листов путем нагрева, выдержки и охлаждения, причем восстановление демпфирующей способности листов осуществляют путем нагрева при температуре 150÷400°С, выдержки не менее 525 с на 1 мм толщины листа и охлаждение проводят со скоростью не менее 2°С/с.

Заявленный способ был многократно апробирован в лабораторных условиях Тульского государственного университета. На кафедре «Физика металлов и материаловедение» Тульского государственного университета с 1980-х гг. ведутся работы по изучению сплавов высокого демпфирования, в частности сплавов системы Mn-Cu. Результаты этих исследований свидетельствуют о возможности получения высокой демпфирующей способности в сплавах с содержанием марганца 36…80%.

Ниже изобретение проиллюстрировано на примерах, не ограничивающих его объем.

Примеры

Восстановление функциональных свойств после вылеживания

Лист толщиной 5 мм из сплава Г75Д25 (следующего химического состава: Mn 73,7%; Cu 25%; Fe 0,8%; S 0,25%; Р 0,25%; суммарное содержание примесей 1,3%) был термически обработан по оптимальному режиму, заключающемуся в закалке от 830°С в 10% раствор NaCl и старении при 440°С в течение 3 часов, и выдержан при комнатной температуре в течение 160 дней (3840 часов).

Пример 1

Лист толщиной 5 мм из сплава Г75Д25 (следующего химического состава: Mn 73,7%; Cu 25%; Fe 0,8%; S 0,25%; Р 0,25%; суммарное содержание примесей 1,3%) после термической обработки по оптимальному режиму и вылеживания нагрели до температуры 50±5°С, выдержали при этой температуре в течение 1 ч и охладили на воздухе до комнатной температуры.

Пример 2

Лист толщиной 5 мм из сплава Г75Д25 (следующего химического состава: Mn 73,7%; Cu 25%; Fe 0,8%; S 0,25%; Р 0,25%; суммарное содержание примесей 1,3%) после термической обработки по оптимальному режиму и вылеживания нагрели до температуры 200±5°С, выдержали при этой температуре в течение 1 ч и охладили на воздухе до комнатной температуры.

Пример 3

Лист толщиной 5 мм из сплава Г75Д25 (следующего химического состава: Mn 73,7%; Cu 25%; Fe 0,8%; S 0,25%; Р 0,25%; суммарное содержание примесей 1,3%) после термической обработки по оптимальному режиму и вылеживания нагрели до температуры 450±5°С, выдержали при этой температуре в течение 1 ч и охладили на воздухе до комнатной температуры.

Данные испытаний механических свойств сплава Г75Д25 после термической обработки (ТО) приведены ниже.

Примечание: σв означает временное сопротивление разрыву;

σ0,2 означает условный предел упругости;

δ означает относительное удлинение;

HV означает твердость по Виккерсу;

Ψ означает относительное рассеяние энергии (демпфирующая способность);

Е модуль нормальной упругости (Модуль Юнга).

Как следует из приведенных данных в таблице 1, механические свойства сплава Г75Д25 после вылеживания при комнатной температуре в течение 160 дней (3840 часов) значимо не изменяются, а демпфирующая способность ниже на 50%, чем после термической обработки по оптимальному режиму. После нагрева предлагаемым в изобретении способом полностью восстанавливаются на прежнем уровне.

Данные испытаний механических свойств сплавов системы Mn-Cu с разным содержанием Mn приведены ниже в таблице 2.

Листы толщиной 5 мм из сплавов системы Mn-Cu были термически обработаны по режиму, заключающемуся в закалке от 830°С в 10% раствор NaCl и старения при 450°С в течение 2 часов, а затем выдержан при комнатной температуре в течение 160 дней (3840 часов). По примеру 2, представленному выше, после термической обработки и вылеживания образцы нагрели до температуры 200±5°С, выдержали при этой температуре в течение 1 ч и охладили на воздухе до комнатной температуры.

Как следует из приведенных данных в таблице 2, во всех исследованных сплавах Mn-Cu (36…80% Mn) вылеживание при комнатной температуре в течение 160 дней (3840 часов) снижает демпфирующую способность, которая полностью восстанавливаются на прежнем уровне после нагрева предлагаемым в изобретении способом.

Восстановление функциональных свойств после деформации

Листы толщиной 5 мм из сплавов системы Mn-Cu были термически обработаны по режиму, заключающемуся в закалке от 830°С в 10% раствор NaCl и старении при 450°С в течение 2 часов, а затем продеформированы на разную степень деформации (1-5%). По примеру 2, представленному выше, после термической обработки и вылеживания образцы нагрели до температуры 200±5°С, выдержали при этой температуре в течение 1 ч и охладили на воздухе до комнатной температуры.

Данные испытаний функциональных свойств (Ψ, %) сплавов системы Mn-Cu с разным содержанием Mn приведены ниже.

Данные, представленные в таблице 3, свидетельствуют о том, что функциональные свойства (Ψ, %) сплавов Mn-Cu снижаются после пластической деформации (γ) на 2%. После отжига предлагаемым в изобретении способом функциональные свойства (Ψ, %) сплавов Mn-Cu полностью восстанавливаются на прежнем уровне.

Предложенный способ позволил снизить трудоемкость и обеспечить ускорение способа восстановления высокого уровня функциональных свойств сплавов Mn-Cu.

Способ термической обработки листов из сплавов системы Mn-Cu, включающий восстановление демпфирующей способности листов путем нагрева, выдержки и охлаждения, отличающийся тем, что восстановление демпфирующей способности листов осуществляют путем нагрева при температуре 150-400°С, выдержки не менее 525 с на 1 мм толщины листа и охлаждения со скоростью не менее 2°С/с.



 

Похожие патенты:

Изобретение относится к трубопрокатному производству. Способ производства холоднокатаных товарных труб размером 219×9×11700-12800 мм из титановых сплавов ПТ-1М и ПТ-7М включает отливку слитков в вакуумно-дуговых печах, ковку слитков в поковки, обточку поковок в заготовки размером 500±5×1750±25 мм, сверление в заготовках центрального отверстия диаметром 90±5 мм, шоопирование Al2O3, нагрев в методических печах в муфелях до температуры 1140-1160°C, прошивку заготовок размером 500±5×90±5×1750±25 мм в стане поперечно-винтовой прокатки на оправке диаметром 300 мм с коэффициентом вытяжки μ от 1,39 до 1,46 в гильзы размером 515×вн.315×2400-2590 мм, прокатку гильз на пилигримовом стане в калибре 351 мм с вытяжкой μ=4,78 и подачей в очаг деформации m=18-20 мм, в передельные трубы размером 338×28×10300-11200 мм, отрезку технологических отходов, правку передельных труб, резку передельной трубы на две трубы равной длины, расточку и обточку горячекатаных передельных труб в трубы-заготовки размером 325×15×5150-5600 мм, прокатку их на станах ХПТ по маршрутам 325×15×5150-5600 - 273×12×7300-7950 - 219×9×11700-12800 мм с относительными обжатиями по стенке δm=20,0%, δ1m=25,0% и коэффициентами вытяжки μm=1,49 и μ1m=1,66.

Изобретение относится к области металлургии, а именно к изготовлению полосы из магнитомягкого сплава. Способ изготовления полосы из магнитомягкого сплава толщиной менее 0,6 мм, пригодной для механической резки, включает холодную прокатку полосы, полученной горячей прокаткой полуфабриката, затем полосу подвергают непрерывному отжигу пропусканием через печь непрерывного действия при температуре в пределах от температуры перехода упорядочения/разупорядочения сплава до температуры начала ферритно-аустенитного превращения сплава, причем скорость движения полосы устанавливают таким образом, чтобы время выдержки полосы в печи непрерывного действия при температуре отжига составляло меньше 10 минут.

Изобретение относится к области металлургии, а именно к обработке давлением и может быть использовано для получения из этих материалов заготовок, полуфабрикатов и изделий с регламентированной структурой, используемых в аэрокосмической и автомобильной технике.

Изобретение относится к металлургии, в частности к термической обработке титановых сплавов. Способ термической обработки изделия из деформируемого сплава ВТ23 характеризуется тем, что изделие нагревают до 850°С, выдерживают 1 ч, охлаждают в воде и подвергают старению при температуре 550°С в течение 10 ч.

Изобретение относится к металлургии, в частности к термической обработке титановых сплавов. Способ термической обработки изделий из титанового сплава ВТ16 включает закалку путем нагрева до температуры 790-830°C, выдержки и охлаждения в воде.

Изобретение относится к области обработки металлов давлением с использованием интенсивной пластической деформации и предназначено для получения нанокристаллических материалов с увеличенным уровнем механических свойств, и может быть использовано при обработке изделий из магнитомягких сплавов.
Изобретение относится к области металлургии, в частности к получению плоского профиля из гафния, и может быть использовано в качестве конструкционного материала в активных зонах атомных реакторов.

Изобретение относится к области обработки металлических лент и получения магнитомеханических маркеров для электронного контроля изделий. .
Изобретение относится к области металлоизделий промышленного назначения, а именно металлической проволоки. .

Изобретение относится к обработке металлов давлением, а именно - к производству кальциевой проволоки прессованием, и может быть использовано для изготовления биметаллической проволоки.

Изобретение относится к трубопрокатному производству, а именно к способу производства товарных труб из титановых сплавов. Способ производства холоднокатаных товарных труб размером 273×10×8700-9500 мм из титановых сплавов ПТ-1М и ПТ-7М включает отливку слитков в вакуумно-дуговых печах, ковку слитков в поковки, обточку поковок в заготовки размером 500±5×1750±25 мм, сверление в заготовках центрального отверстия диаметром 90±5 мм, шоопирование Al2O3, нагрев в методических печах в муфелях до температуры 1140-1160°C, прошивку заготовок размером 500±5×90±5×1750±25 мм в стане поперечно-винтовой прокатки на оправке диаметром 300 мм с коэффициентом вытяжки μ от 1,39 до 1,46 в гильзы размером 515×вн.315×2400-2590 мм, прокатку гильз на пилигримовом стане в калибре 351 мм с коэффициентом вытяжки μ=4,78, с подачами гильз в очаг деформации m=18-20 мм, в передельные трубы размером 338×28×10300-11200 мм, резку передельных труб на две трубы равной длины, расточку и обточку горячекатаных передельных труб в трубы-заготовки размером 325×15×5150-5600 мм, прокатку их на станах ХПТ по маршруту 325×15×5150-5600 - 273×10×8700-9500 мм с относительным обжатием по стенке δm=33,3% и коэффициентом вытяжки μm=1,77. Обеспечивается освоение производства нового вида труб из титановых сплавов. 1 табл.

Изобретение относится к металлургии, а именно к получению заготовки из наноструктурного сплава титан-никель с эффектом памяти формы, и может быть использовано в машиностроении, медицине и технике. Способ получения заготовки из наноструктурного сплава Ti49,3Ni50,7 с эффектом памяти формы включает равноканальное угловое прессование с накопленной степенью деформации более 4 в интервале температур 300-550°С, пластическую деформацию и отжиг. Полученную после РКУП заготовку заключают в стальную оболочку и осуществляют пластическую деформацию свободной осадкой до степени не менее 30% в интервале температур 20-300°С, после чего заготовку извлекают из оболочки и осуществляют отжиг при температуре Т=200-400°С. Повышаются механические свойства и функциональные характеристики с необходимым поперечным сечением заготовок. 1 табл., 2 пр.
Наверх