Гипергольное ракетное топливо

Изобретение относится к ракетно-комической технике, а именно к самовоспламеняющимся (гипергольным) топливным системам, которые применяются для решения широкого спектра задач, например в маршевых двигателях, для ориентации космических аппаратов. Гипергольное ракетное топливо, самовоспламеняющееся при контакте с окислителем, состоит из горючего с пиротехнической добавкой и окислителя, в котором в качестве окислителя используют водные растворы пероксида водорода с концентрацией 81,5-98 мас.%, а в качестве горючего используют керосин с растворенной в нем пирофорной высокоактивной добавкой, содержание которой составляет 10-15 мас.% от веса горючего. Добавка представляет собой смесь, в состав которой входит 87 мас.% триэтилбора и 13 мас.% триэтилалюминия. Использование топлива позволяет повысить устойчивость сгорания компонентов, облегчить запуск и упростить конструкцию жидкостного ракетного двигателя из-за отсутствия системы зажигания. 3 ил., 1 табл., 2 пр.

 

Изобретение относится к области ракетно-космической техники, а именно к самовоспламеняющимся (гипергольным) топливным системам, которые включают горючее, растворенные в нем добавки и окислитель. Топлива такого типа применяются для решения широкого спектра задач: в маршевых двигателях, для ориентации космических аппаратов. Использование такого топлива позволяет повысить устойчивость сгорания компонентов, облегчить запуск и упростить конструкцию жидкостного ракетного двигателя (ЖРД) из-за отсутствия системы зажигания.

Традиционно в ракетно-космической технике в качестве самовоспламеняющегося ракетного топлива используются горючие на основе ароматических и алифатических аминов в паре с азотнокислотными ракетными окислителями, например несимметричный диметилгидразин в паре с тетраоксидом азота и другие топлива. Также самовоспламеняющееся ракетное топливо может использоваться как пусковое горючее.

Вышеупомянутые пропелленты имеют отличные эксплуатационные характеристики с точки зрения удельного импульса, плотности, задержки воспламенения и надежности.

Однако использование таких самовоспламеняющихся топлив на практике связано со значительным риском из-за их чрезвычайной токсичности и коррозионной активности.

В качестве окислителя в составах самовоспламеняющихся топлив используют концентрированную азотную кислоту, которая является мощным окислителем благодаря большому содержанию в ней кислорода. От всех широко используемых окислителей она выгодно отличается большим удельным весом. Главный ее недостаток - высокая коррозийная активность по отношению к большинству материалов. Хранение и транспортировка ее производится с использованием специальных емкостей. Также азотная кислота ядовита. Попадание ее на кожу человека вызывает появление болезненных, долго не заживающих язв.

Для устранения указанных недостатков в составах самовоспламеняющихся топлив используют тетраоксид азота, являющийся более эффективным окислителем, чем азотная кислота. Топлива на ее основе имеют удельную тягу примерно на 5% больше, чем азотнокислотные. По отношению к материалам тетраоксид азота значительно менее агрессивен, чем азотная кислота, но более ядовит. Главный его недостаток - низкая температура кипения и высокая температура затвердевания, что резко уменьшает возможность его использования в ракетных топливах в чистом виде. Условия его применения улучшаются в смесях с другими оксидами азота.

В составах самовоспламеняющихся топлив применяют также жидкий фтор, который обладает лучшими окислительными свойствами, чем кислород. Из всех химических элементов он наиболее активен, вступая в соединения почти со всеми окисляющимися веществами при обычной комнатной температуре. Из-за своей исключительно высокой химической активности фтор со всеми горючими образует самовоспламеняющиеся смеси.

Однако фтор очень ядовит. Он сильно разъедает кожу, глаза, дыхательные пути. Поэтому в ракетной технике он пока используется только в опытных двигателях.

Известно также использование в указанных целях гидразина и его производных (метилгидразин, несимметричный диметилгидразин и их смеси - так называемого аэрозина) в паре с самыми разными окислителями сопровождаются со значительными трудностями эксплуатационного характера. Гидразин и большинство его производных очень токсичны и определены как канцерогены. Пары гидразина вызывают раздражение глаз, дыхательных путей, при повышении концентрации приводит к коме и смерти человека.

Хранение высокотоксичных топлив на борту летательных аппаратов в течение длительных космических полетов представляет собой серьезную угрозу безопасности.

В связи с этим создание самовоспламеняющегося топлива с гораздо меньшей токсичностью и сопоставимой эффективностью является актуальной задачей.

Известна топливная система, состоящая из высококонцентрированного пероксида водорода (ВПВ), силана и жидкого горючего. В зону горения подается ВПВ и силан. Происходит разложение пероксида водорода и воспламенение силана. После воспламенения в зону горения вводится горючее, а подача силана уменьшается и прекращается (Патент US 6807805, МПК С06 В47/02; C06D 5/08; F02K 9/42; 2004).

Наиболее близким к предлагаемому изобретению и принятой нами в качестве прототипа является композиция четырехкомпонентного горючего для гипергольного топлива (Патент CN 102863994, МПК C10L 1/182; C10L 1/22; C10L 1/30; 2013). Компонентами топлива являются: этанол, пропанол, бутанол и авиационный керосин. Кроме того, в составе горючего используют алкилзамещенные алкамины, катализаторы - тетрагидрат ацетата кобальта, изооктоат кобальтата, ацетилацетонат кобальта, вспомогательные катализаторы: диалкилэтаноламины, растворители. Горючее не токсично, не склонно к старению и ухудшению, способно к использованию в жидкостных ракетных двигателях. Данное горючее в контакте с пероксидом водорода, имеющего высокую концентрацию (70-90%) можно использовать как гипергольное топливо. Под действием растворенного в этаноле катализатора происходит разложение пероксида водорода, что приводит к воспламенению горючего.

Недостатками данного изобретения является присутствие в топливной системе, помимо окислителя и горючего, дополнительно катализатора-инициатора, требующего отдельную линию подачи и хранения, что усложняет конструкцию и повышает стоимость ЖРД.

Задачей предлагаемого изобретения является создание перспективного топлива, обладающего малой токсичностью и самовоспламеняющегося при контакте с окислителем.

Указанная задача решается за счет того, что разработано гипергольное ракетное топливо, самовоспламеняющееся при контакте с окислителем, состоящее из горючего с пиротехнической добавкой и окислителя, отличающееся тем, что в качестве окислителя используют водные растворы пероксида водорода с концентрацией 81,5-98% мас., а в качестве горючего используют керосин с растворенной в нем пирофорной высокоактивной добавкой, содержание которой составляет 10-15% мас. от веса горючего, причем добавка представляет собой смесь, в состав которой входит 87% мас. триэтилбора и 13% мас. триэтилалюминия.

Результаты испытаний новой гипергольной топливной композиции отражены в следующих примерах.

На фиг. 1. показана блок схема экспериментального стенда с автоматизированной вытеснительной системой подачи компонентов.

Стендовая установка оборудована расходными баками хранения высококонцентрированного пероксида водорода 5 и керосина 6. Электроклапаны 1, 2, 9 и 10 обеспечивают подачу компонентов топливной системы через форсунки 13, 14 в камеру сгорания 15. Для измерения времени выхода на режим по температуре и давлению установка оборудована датчиками измерения давления наддува 3, 4, 11, 12, а также датчиками контроля температуры 7 и 8. Регулировку подачи сжатого азота для наддува компонентов, осуществляют через пульт управления, расположенный в помещении управления стендом.

На фиг. 2 приведена конструкция камеры сгорания, которая позволяет организовывать встречу распыленных в центробежных форсунках 16, 17 компонентов.

Пример 1

Для установления физической картины воспламенение распыленных компонентов организовали при нормальных условиях, в инертной газовой среде, в среде газообразного кислорода и вакууме. Процесс смешения и воспламенения фиксировали на кинокамере. Лучшее смешение компонентов топлива осуществляется при давлении наддува 3 атм., расход горючего 3,15 г/с, расход окислителя 4,5 г/с, расстояние между форсунками 40 мм, угол впрыска 45°. Концентрация высококонцентрированного пероксида водорода 93%.

Как показали эксперименты, при одной о той же концентрации пирофорной добавки в керосине (15% мас.) в инертной среде азота воспламенение не происходит, в кислородной среде реализуется надежное воспламенение. При распыливании компонентов центробежными форсунками происходит надежное воспламенение на воздухе с 12% пирофорной добавки, а в кислородной среде - при 9% масс. добавки в керосине.

Пример 2

Испытания воспламенения при разных концентрациях окислителя и пирофорной добавки в керосине, проводят в цилиндрической камере сгорания 20 без критического сечения. Эксперимент проводят только в атмосфере воздуха при нормальных условиях, без создания дополнительной инертной или окислительной среды. Концентрация ВПВ составляет 81,5% мас., 85,7% мас., 93% мас. и 98% мас., наддув осуществляют при помощи азота. Условия испытаний: давление наддува горючего - 5 атм., давление наддува окислителя - 8 атм., расход окислителя - 16 г/с, расход горючего - 17 г/с, были выбраны из условия лучшей картины распыла компонентов топлива из форсунок смесительной головки 18, 19. Схема смесительной головки и камеры двигателя показана на фиг 3.

Из приведенных данных видно, что надежное воспламенение при струйном смешении в цилиндрической камере, достигается при концентрации пирофорной добавки в керосине >9% мас., в атмосфере воздуха. Увеличение концентрации гипергольной высокоактивной добавки выше 20% мас., может привести к самовоспламенению горючего при контакте с воздухом, и ухудшению технологических и эксплуатационных свойств горючего из-за закоксовывания трубопроводов и форсунок оксидами алюминия и бора.

Результаты испытаний, показаны в таблице:

Технический результат состоит в том, что разработано и испытано новое гипергольное топливо, токсичность, коррозионная активность и эффективность которого приближается к характеристикам традиционных, не самовоспламеняющихся ракетных топлив. Используемый высококонцентрированный пероксид водорода не токсичен, образующаяся при разложении парогазовая смесь состоит из экологически чистых компонентов: кислорода и перегретого водяного пара. ВПВ можно хранить при нормальных условиях в алюминиевых емкостях, широко используемых в ракетно-космической технике, допускается кратковременный контакт с материалами из нержавеющей стали

Данное изобретение имеет высокий потенциал для применения в системах ориентации космического аппарата, маршевых ЖРД для вывода большей массы полезной нагрузки на орбиту.

Гипергольное ракетное топливо, самовоспламеняющееся при контакте с окислителем, состоящее из горючего с пиротехнической добавкой и окислителя, отличающееся тем, что в качестве окислителя используют водные растворы пероксида водорода с концентрацией 81,5-98%, а в качестве горючего используют керосин с растворенной в нем пирофорной высокоактивной добавкой, содержание которой составляет 10-15 мас.% от веса горючего, причем добавка представляет собой смесь, в состав которой входит 87 мас.% триэтилбора и 13 мас.% триэтилалюминия.



 

Похожие патенты:

Присадка комплексного действия, предназначенная для улучшения процессов транспортировки нефти и нефтепродуктов, содержит полимер, азотсодержащее соединение и поверхносто-активное вещество, характеризующаяся тем, что дополнительно содержит наноразмерный оксид алюминия с размером частиц 40 нм, в качестве полимера используют низкомолекулярный полиэтилен, в качестве азотсодержащего вещества – гидразин, а в качестве поверхносто-активного вещества – неионогенное поверхносто-активное вещество Реапон-4В при следующем соотношении компонентов, мас.%: низкомолекулярный полиэтилен 60-65 гидразин 20-25 указанный оксид алюминия 5-10 Реапон-4В 5-10 Технический результат заключается в том, что присадка обладает как вязкостным, так и противотурбулентным действием и проявляет высокую механическую устойчивость к различным механическим деструкциям.

Изобретение относится к топливной композиции для дизелей на основе дизельного топлива с добавлением спирта, эмульгатора, воды, смеси мыл диэтаноламина и олеиновой кислоты, при этом топливная композиция дополнительно содержит присадку ЦД-7К при следующих соотношениях компонентов, мас.%: этанол 5,0-50,0; вода 0,5-7,0; смазывающая присадка ЦД-7К 2,0; смесь мыл диэтаноламина и олеиновой кислоты 0,2; алкенилсукцинимид 0,25-1,0; дизельное топливо - до 100.

Изобретение относится к способу маркировки углеводородной жидкости. Способ включает стадию добавления в указанную жидкость маркирующего соединения, соответствующего формуле I: ,в котором X независимо выбирают из группы, состоящей из атома водорода, атома брома, атома фтора, частично или полностью галогенированной алкильной группы, линейной, разветвленной или циклической С1-С20 алкильной группы и фенильной группы, замещенной одним или несколькими атомами галогена, алкильной группой или галогенированной алкильной группой; Y независимо выбирают из группы, состоящей из атома брома, атома фтора, частично или полностью галогенированной алкильной группы, разветвленной или циклической С1-С9 алкильной группы и фенильной группы, замещенной по меньшей мере одной алкильной группой и/или галогенированной алкильной группой; Z выбирают из группы, состоящей из (i) фенильной группы, замещенной одним или несколькими атомами галогена, алифатической группой, или галогенированной алифатической группой, (ii) частично или полностью галогенированной алкильной группы, или (iii) линейной, разветвленной или циклической С1-С20 алкильной группы.

Изобретение описывает охлаждающую среду, которая в основном состоит из синтетического дизельного топлива, включающего нециклические алканы в количестве, по меньшей мере, 50%, возможно, алкилированные моноциклические алканы в количестве до 50%, не более 1% ароматических углеводородов и не более 1% ди-полициклических алканов.

Настоящее изобретение относится к области нефтепереработки и нефтехимии, конкретно - к составу октаноповышающей добавки к бензину и композиции, содержащей эту добавку, предназначенной для использования в двигателях внутреннего сгорания.
Изобретение относится к композиции жидкого топлива, включающее жидкое топливо и присадку в количестве 0,005-0,03 мас.%, при этом присадка к жидкому топливу содержит соль металла органической кислоты с числом углеродных атомов C15-C18 в количестве 10-90 мас.%, в которой металл является металлом, расположенным в электрохимическом ряду активности правее водорода, ароматический амин 1-5 мас.%, полимер сукцинимида 3-10 мас.% и глицерин 1-75 мас.%.
Изобретение относится к способу повышения антидетонационных величин моторных топлив для карбюраторных и инжекторных двигателей, заключающийся в том, что к прямогонному бензину добавляют компонент, содержащий одно или несколько веществ из группы ацетилацетонатов 3d-металлов общей формулы М(C5H7O2 )n, где n=2-3, в количестве 10-12% масс.
Изобретение относится к антидымной присадке, включающей координационное соединение редкоземельных элементов - гидроксокарбонат лантана. .
Изобретение относится к антидымной присадке, включающей координационное соединение редкоземельных элементов - декааква-2-сульфобензоат эрбия. .

Присадка комплексного действия, предназначенная для улучшения процессов транспортировки нефти и нефтепродуктов, содержит полимер, азотсодержащее соединение и поверхносто-активное вещество, характеризующаяся тем, что дополнительно содержит наноразмерный оксид алюминия с размером частиц 40 нм, в качестве полимера используют низкомолекулярный полиэтилен, в качестве азотсодержащего вещества – гидразин, а в качестве поверхносто-активного вещества – неионогенное поверхносто-активное вещество Реапон-4В при следующем соотношении компонентов, мас.%: низкомолекулярный полиэтилен 60-65 гидразин 20-25 указанный оксид алюминия 5-10 Реапон-4В 5-10 Технический результат заключается в том, что присадка обладает как вязкостным, так и противотурбулентным действием и проявляет высокую механическую устойчивость к различным механическим деструкциям.

Изобретение раскрывает способ получения водоугольной суспензии, предусматривающий получение водоугольной суспензии с возможностью применения на объектах энергетики, характеризующийся тем, что водоугольную суспензию получают путем электро- и термоактивации мелкодисперсных частиц угля в суспензии электрическим разрядом по всему объему емкости с возможностью достижения агрегативной и седиментационной устойчивости суспензии за период обработки, во всем объеме емкости получают электрический разряд между вращающимся электродом, который служит катодом, и внутренней поверхности корпуса емкости, которая служит анодом, при этом во всем объеме емкости получают удельное энергопотребление от 0,4 до 0,6 кВт*ч/кг при температуре от 273 до 393 K с помощью электротермического воздействия тока на частицы угля в суспензии, с выделением газов СН4, Н2 и СО и с возможностью интенсифицирования процесса сжигания суспензии на энергетических объектах, в результате чего образуются нитевидные каналы электрического разряда между электродом и корпусом емкости, которые проходят по поверхности частиц угля и через ионизированную воду, а нитевидные каналы равномерно распределяются в суспензии, причем зона распределения каналов перемещается вместе с вращением электрода.
Изобретение раскрывает присадку для мазута, которая выполнена в виде суспензии из наноструктурированного гидроксида магния в количестве (45-55%) и смеси дизельного топлива с минеральным маслом - остальное, в соотношении между ними (0,5-1,25).

Изобретение описывает топливо для гиперзвукового прямоточного воздушно-реактивного двигателя (ГПВРД) на основе синтетического высокоплотного горючего Т-10, при этом в топливо дополнительно введен промотор горения - трет-бутилгидропероксид и антиоксидант – ионол ( мас.%) горючее Т-10 95,495-94,492 трет-бутигидропероксид 4,5-5,5 ионол 0,005-0,008 Технический результат заключается в создании топлива для ГПВРД с увеличенными сроками хранения, увеличенной нормальной скоростью горения и уменьшенным периодом задержки воспламенения при сжигании в турбулентном потоке в камере ГПВРД при введении в него трет-бутилгидропероксида в качестве промотора горения и ионола в качестве антиоксиданта.

Изобретение описывает многофункциональную композиционную добавку к автомобильному бензину на основе производных ароматических аминов, алифатических спиртов, антиокислительной и моющей присадок, характеризующуюся тем, что в качестве производных ароматических аминов содержит мета-толуидин, и/или N-метил-параанизидин, и/или 2,4-ксилидин и дополнительно содержит вторичные и/или третичные метиловые эфиры С4-С5 углеводородов в следующем соотношении компонентов (% масс.): Мета-толуидин, и/или N-метил-параанизидин, и/или 2,4-ксилидин 10,0-70,0 Алифатические спирты 0-35,0 Вторичные и/или третичные метиловые эфиры С4-С5 углеводородов 6,0-55,0 Антиокислительная присадка 0,2-0,4 Моющая присадка 0,4-0,8 Также раскрывается топливная основа, состоящая из этерифицированного бензина каталитического крекинга и многофункциональной композиционной добавки.

Изобретение относится к способу получения биодизельного топлива для двигателей внутреннего сгорания дизельного типа. В основе способа лежит реакция переэтерификации триглицеридов при температуре 20-80°С.

Настоящая заявка относится к маркирующей метке для бензинов, представляющей собой гидроксилсодержащие производные ароматического ряда, в которых гидроксильная группа соединена непосредственно с ароматическим ядром, выбранные из ряда резорцина, 4-гексилрезорцина или β-нафтола.

Изобретение раскрывает присадку для снижения потерь бензинов от испарения при их хранении и применении, которая характеризуется тем, что в качестве поверхностно-активного вещества используют продукт конденсации борной кислоты, этаноламина и стеариновой кислоты при их мольном соотношении 1:1,5:1,5 соответственно в количестве 0,001-0,01 мас.%.

Изобретение относится к топливной композиции для дизелей на основе дизельного топлива с добавлением спирта, эмульгатора, воды, смеси мыл диэтаноламина и олеиновой кислоты, при этом топливная композиция дополнительно содержит присадку ЦД-7К при следующих соотношениях компонентов, мас.%: этанол 5,0-50,0; вода 0,5-7,0; смазывающая присадка ЦД-7К 2,0; смесь мыл диэтаноламина и олеиновой кислоты 0,2; алкенилсукцинимид 0,25-1,0; дизельное топливо - до 100.

Изобретение раскрывает способ маркировки углеводородной жидкости, которая выбрана из дизельного топлива, бензинового топлива и растворителя, включающий стадию добавления к указанной жидкости соединения-индикатора, которое представляет собой соединение формулы (I), где каждый заместитель А независимо выбирают из группы, состоящей из (i) фенильной группы, (ii) фенильной группы, замещенной одним или несколькими атомами галогена, алифатической группой или галогенированной алифатической группой, (iii) частично или полностью галогенированной алкильной группы или (iv) линейной, разветвленной или циклической C1-C20 алкильной группы, и каждый заместитель В независимо выбирают из группы, состоящей из (i) фенильной группы, (ii) незамещенной фенилметильной группы, (iii) замещенной фенильной или фенилметильной группы, в которой бензольное кольцо замещено по меньшей мере одним заместителем, выбранным из группы, состоящей из атома фтора, частично или полностью галогенированной алкильной группы и линейной, разветвленной или циклической C1-C20 алкильной группы или (iv) линейной, разветвленной или циклической C1-C20 алкильной группы, где соединение-индикатор добавляют к углеводородной жидкости в концентрации от 1 мкг/л до 1000 мкг/л.
Изобретение относится к способам получения углеводородного топлива для ракетной техники и может быть использовано в нефтеперерабатывающей промышленности. Разработан способ получения углеводородного топлива повышенной плотности для ракетной техники смешением товарных топлив, вырабатываемых нефтеперерабатывающей промышленностью, а именно смешением топлива Т-6 с топливом для реактивных двигателей марки РТ или ТС-1 с содержанием в смеси топлива РТ или ТС-1 в количестве 25%-45% мас.
Наверх