Способ получения нанопрофилированной ультратонкой пленки al2o3 на поверхности пористого кремния

Использование: для роста наноразмерных пленок диэлектриков на поверхности монокристаллических полупроводников. Сущность изобретения заключается в том, что пленку Al2O3 наносят ионно-плазменным распылением на слой пористого кремния с размером пор менее 3 нм, полученного электрохимическим травлением исходной пластины монокристаллического кремния, при рабочем давлении в камере в диапазоне 3-5⋅10-3 мм рт.ст. и потенциале мишени - 400-600 В. Технический результат: обеспечение возможности создания эффективного способа изготовления нанопрофилированной ультратонкой пленки диоксида алюминия на поверхности пористого кремния. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области нанотехнологий и наноматериалов, в частности к методам роста наноразмерных пленок диэлектриков на поверхности монокристаллических полупроводников.

Известен способ осаждения наноразмерной пленки альфа- Al2O3 (0001) на металлические подложки (Патент РФ 2516366, МПК C23C 14/16, B82Y 30/00, опубл. 20.05.2014). В условиях сверхвысокого вакуума проводят нагрев, испарение и осаждение пленки оксида алюминия на металлическую подложку с определенной ориентацией кристаллов. Осуществляют осаждение испаряемого потока, состоящего из частиц AlO и (AlO)2. Испаряемый поток состоит из частиц AlO и (AlO)2, а после осаждения каждого последующего монослоя проводят экспозицию в молекулярном кислороде при парциальном давлении 10-7 мм рт. ст. в течение 3 минут при температуре подложки 700°C. Получается ориентированная высокостабильная наноразмерная пленка α- Al2O3 (0001) на чистой поверхности металла-подложки с сохранением межфазовой границы оксид-металл на атомном уровне.

К недостаткам этого способа относится энергозатратность способа (высокие температуры получения), использование исключительно металлической поверхности, что делает непригодным данный метод для использования в области нано и оптоэлектроники, а также взаимная диффузия атомов алюминия и подложки при высоких температурах.

Наиболее близким к заявляемому изобретению является способ импульсно-лазерного получения тонких пленок материалов с высокой диэлектрической проницаемостью на подложках кристаллического кремния в условиях сверхвысокого вакуума (Патент РФ 2306631, МПК H01L 021/316, опубл. 20.09.2007). Однако и он не лишен недостатков. Основным из них является малая площадь поверхности для формирования пленки (5×5 мм) и отсутствие структурирования пленки.

Техническая задача изобретения заключается в разработке эффективного способа создания нанопрофилированной ультратонкой пленки диоксида алюминия на поверхности пористого кремния, необходимой для использования в качестве оптических проводящих каналов.

Технический результат достигается тем, что нанопрофилированная пленка Al2O3 формируется методом ионно-плазменного распыления на слое пористого кремния с размерами пор менее 3 нм, полученного анодным электрохимическим травлением в электролите исходного монокристаллического кремния.

Технический результат заключается:

- в возможности формирования методом ионно-плазменного напыления ориентированных на поверхности пористого кремния нанонитей Al2O3;

- в значительной площади структурированной поверхности.

Способ получения нанопрофилированной ультратонкой пленки Al2O3 на поверхности монокристаллической полупроводниковой кремниевой пластины с поверхностным пористым слоем осуществляют в два этапа.

На первом этапе формируют пористый слой на пластине монокристаллического кремния. Для этого используется ячейка электрохимического анодного травления (фиг. 1).

В качестве исходных подложек используются пластины монокристаллического кремния, легированного бором, с высоким удельным сопротивлением от 5 до 10 Ом*см.

Предлагаемый способ проиллюстрирован чертежами, где на фиг. 1 изображена схема ячейки электрохимического травления. 1 - фторопластовая ванна, 2 - раствор электролита, 3 - U-образный контрэлектролит из нержавеющей стали, который в процессе электрохимического травления является катодом, 4 - исходная пластина кристаллического кремния, которая в процессе электрохимического травления является анодом и на которой получается слой пористого кремния, 5 - система контроля и установки тока, состоящая из источника постоянного тока со встроенным мультиметром.

Пластина прямоугольной формы размером 2 см × 1 см помещается в раствор электролита следующего состава: 2 объемные части концентрированной плавиковой кислоты (40%) + 2 объемные части изопропилового спирта +1 объемная часть перекиси водорода (30%). Высокое удельное сопротивление исходной полированной кремниевой пластины за счет малого количества примесных дефектов обеспечивает равномерное травление и однородное распределение пор по размерам.

Это позволяет избежать проблем, характерных для стандартного расположения кремниевой пластины в донной части кюветы, связанных с уплотнением пластины кремния, во избежание протечек электролита, содержащего агрессивную плавиковую кислоту. Травление проводится в режиме постоянного тока при плотности 50-75 мА/см2. Время травления можно варьировать от 5 до 30 мин, что позволяет изменять толщину пористого слоя в пределах от 50 до 300 нм с размерами пор менее 3 нанометров.

При увеличении времени травления свыше 30 минут резко падает плотность тока через пластину и эффективность травления существенно снижается. Возможен сильный перегрев и закипание раствора электрохимического травления, что обычно приводит к значительному снижению качества (увеличение шероховатости и степени загрязнения продуктами раствора ЭХТ) поверхности получаемых образцов.

На втором этапе методом ионно-плазменного распыления на слой пористого кремния наносится пленка Al2O3. Для этого производится бомбардировка мишени из алюминия марки А-999 ионами кислорода в плазме особо чистого (99,999) кислорода без специального добавления аргона. Рабочее давление варьируется в диапазоне 3-5⋅10-3 мм рт.ст. Подложка образца за время процесса напыления разогревается до (200-250)°C. Используются сравнительно невысокие для подобных процессов потенциалы мишени - 400-600B, что позволяет добиваться практически 100% окисления атомов распыляемого алюминия в рабочем объеме камеры до подлета их до образца. Скорость роста пленки Al2O3 составляет 20-40 ангстрем в минуту. Для устойчивости горения кислородной плазмы в процессе напыления производится предварительная подготовка оснастки рабочей камеры установки. Перед каждым процессом производится запыление всей оснастки камеры (включая держатель образца) алюминием посредством распыления алюминиевой мишени в плазме аргона. В противном случае происходит загрязнение напыляемой пленки Al2O3 осколками от микровзрывов диэлектрической пленки окиси алюминия, осажденной на подложкодержателе от предыдущих процессов.

В процессе формирования пленки происходит рост оксида алюминия на поверхности слоя пористого кремния в виде ориентированных в одном направлении нанонитей высотой 80-100 нм, расположенных на поверхности на расстоянии 300-500 нм друг от друга (фиг. 2). Такой механизм роста задается кристаллографической ориентацией исходной пластины монокристаллического кремния, используемой для создания пористого слоя, методом и условиями создания пористого слоя, а также способом формирования пленки Al2O3 методом ионно-плазменного распыления.

Сформированные на поверхности гетерофазной структуры наноразмерные структурированные нити Al2O3 могут служить оптическими проводящими каналами и достаточно эффективно внедрены в стандартные технологии микро и оптоэлектроники.

1. Способ получения нанопрофилированной ультратонкой пленки Al2O3 на поверхности пористого кремния, заключающийся в ионно-плазменном распылении пленки Al2O3 на слое пористого кремния с размером пор менее 3 нм, полученного электрохимическим травлением исходной пластины монокристаллического кремния, при рабочем давлении в камере в диапазоне 3-5⋅10-3 мм рт.ст. и потенциале мишени - 400-600 В.

2. Способ по п. 1, отличающийся тем, что механизм роста пленки задается кристаллографической ориентацией исходной пластины монокристаллического кремния, методом и условиями создания пористого слоя, а также способом формирования пленки Al2O3 методом ионно-плазменного распыления.



 

Похожие патенты:

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления затворного оксида полевого транзистора.

Настоящее изобретение касается способа изготовления полупроводникового ламината, включающего в себя первый и второй слои оксида металла, а также слой диэлектрика, причем первый слой оксида металла располагается между вторым слоем оксида металла и слоем диэлектрика и имеет толщину равную или менее 20 нм.

Использование: для формирования стабильного и кристаллического оксидного слоя на подложке. Сущность изобретения заключается в том, что очищают поверхность подложки из In-содержащего III-As, III-Sb или III-P от аморфных естественных оксидов, нагревают очищенную подложку из In-содержащего III-As до температуры примерно 340-400°С, очищенную подложку из In-содержащего III-Sb нагревают до температуры примерно 340-450°С, или очищенную подложку из In-содержащего III-P нагревают до температуры примерно 450-500°С и окисляют подложку введением газообразного кислорода к поверхности подложки.

Изобретение относится к микроэлектронике. В способе получения слоя диоксида кремния, включающем загрузку полупроводниковой подложки в реактор, нагрев полупроводниковой подложки до необходимой температуры в диапазоне 400-750°С, введение окислителя закиси азота и моносилана и поддержание давления в реакторе в диапазоне 0,3-20 мм рт.

Изобретение относится к области изготовления наноструктур, а именно к синтезу оксидных пленок нанометровой толщины на поверхности полупроводников класса АIIIBV, и может быть применено при формировании элементов электроники на поверхности полупроводников, в высокочастотных полевых транзисторах и длинноволновых лазерах, а также в солнечных элементах.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления тонкого подзатворного слоя диоксида кремния с высокой диэлектрической прочностью.

Изобретение относится к способу образования кремнистой пленки. Согласно данному способу, кремнистая пленка, имеющая гидрофильную поверхность, может быть образована из полисилазанового соединения при низкой температуре.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты поверхности кристаллов p-n переходов от различных внешних воздействий.
Изобретение относится к технологии изготовления полупроводниковых приборов и интегральных схем, в частности к способам защиты поверхности p-n- переходов. Изобретение обеспечивает получение равномерной поверхности, уменьшение температуры и длительности процесса.
Изобретение относится к технологии изготовления полупроводниковых приборов и кремниевых транзисторов, в частности к способам защиты поверхности кристаллов. Изобретение обеспечивает сокращение длительности процесса.

Изобретение относится к нанотехнологии. Сначала смешивают полимер с катализатором и растворителем до получения однородного раствора.

Изобретение относится к химической промышленности. Взрывчатое вещество со скоростью детонации 6300 м/с или более размещают на периферии исходного вещества, содержащего ароматическое соединение с не более чем двумя нитрогруппами, например, динитротолуола, динитробензола или динитроксилола.

Изобретение относится к медицине. Описан способ изготовления саморасширяющегося периферического стента из сплава на основе никелида титана с эффектом памяти формы (ЭПФ) и сверхэластичности с модифицированной поверхностью.

Изобретение может быть использовано в неорганической химии. Способ получения нанодисперсных оксидов металлов включает формирование реакционной смеси путем внесения нитратов металлов и карбамида в водную среду в стехиометрическом соотношении.

Изобретение относится к нанотехнологиям для материалов и покрытий, к изготовлению или обработке наноструктур, а также к нанобиотехнологии. Нанопинцет содержит два конусообразных электрода со сходящимися вершинами, подключенные к управляемому источнику электрического напряжения, сердечник из изолирующего оптически прозрачного материала, расположенный между конусообразными электродами, и лазер с регулируемыми параметрами излучения, вводимого через сердечник к вершинам конусообразных электродов для термодесорбции захваченной частицы из межэлектродного пространства в заданную область подложки.

Изобретение относится к технологии получения нанопроволок AlN для микроэлектроники и может быть использовано для улучшения рассеивания тепла гетероструктурами, для создания светильников, индикаторов и плоских экранов, работающих на матрице из нанопроволок и т.д.

Изобретение относится к области гальванотехники и может быть использовано при изготовлении имплантатов. Способ формирования нанопористого оксида на поверхности имплантата из порошкового ниобия, включающий обработку в ультразвуковой ванне последовательно в ацетоне и этаноле, промывку в дистиллированной воде, сушку на воздухе и анодирование в водном растворе 1М H2SO4+1% HF в гальваностатическом режиме при плотности тока 0.01 А/дм2 в течение одного часа.

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из сверхвысокомолекулярного полиэтилена 40-62 мас.%, порошка вольфрама 18-20 мас.%, нитрида бора 15-20 мас.% и технического углерода УМ-76 5-20 мас.%.

Изобретение относится к области защиты от ионизирующего и сверхвысокочастотного излучения. Предлагаемый композиционный материал состоит из: сверхвысокомолекулярного полиэтилена - 50-75 масс.%, пентаборида дивольфрама - 20-30 масс.% и технического углерода УМ-76 - 5-20 масс.%.

Изобретение относится к области химии, а именно к катализаторам, предназначенным для процесса гидроизомеризации н-алканов, а также прямогонных и гидроочищенных дизельных фракций, и может быть использовано в нефтеперерабатывающей промышленности.
Изобретение раскрывает присадку для мазута, которая выполнена в виде суспензии из наноструктурированного гидроксида магния в количестве (45-55%) и смеси дизельного топлива с минеральным маслом - остальное, в соотношении между ними (0,5-1,25). Техническим результатом является обеспечение при использовании присадки более полного сгорания мазута с изменением при этом структуры отложений на поверхностях нагрева котла из липких и твердых в рыхлые и порошкообразные, легко удаляемые, а также снижение вредных веществ в выбрасываемых в атмосферу дымовых газах, загрязняющих атмосферу.
Наверх