Способ дезактивации радиоактивных ионообменных смол

Изобретение относится к области переработки радиоактивных отходов, а именно к дезактивации отработанных ионообменных смол (ИОС). Способ дезактивации радиоактивных ионообменных смол включает обработку отработанных радиоактивных ИОС дезактивирующим раствором и очистку дезактивирующего раствора от радионуклидов. Обработку радиоактивных ионообменных смол проводят дезактивирующим раствором солей щелочных металлов с концентрацией от 3 до 5 моль/л при рН от 8 до 12 с добавлением окислителя при одновременном воздействии на смолу ультразвуковыми колебаниями с интенсивностью от 2 до 5 Вт/см2 и частотой от 22 до 44 кГц, при температуре от 50 до 80°C. Изобретение позволяет полностью дезактивировать ИОС и минимизировать количество образующихся вторичных радиоактивных отходов. 4 з.п. ф-лы, 4 пр.

 

Изобретение относится к области переработки радиоактивных отходов, а именно к дезактивации отработанных ионообменных смол (ИОС).

Отработанные смолы являются радиоактивными отходами, образующимися при эксплуатации ядерных энергетических установок. Их дезактивация и безопасная утилизация является важной экологической задачей. Причем в процессе дезактивации необходимо обеспечить минимизацию образования вторичных радиоактивных отходов.

Известен способ дезактивации отработанной ионообменной смолы из емкости хранилища радиоактивных отходов атомной электростанции [патент РФ №2224310, опубликован 20.02.2004]. Сущность изобретения: через отработанную катионообменную смолу пропускают дезактивирующий раствор, имеющий температуру от 30 до 100°C, включающий натриевую соль и кислоту. Затем осуществляют очистку полученного десорбата на фильтре с ферроцианидным сорбентом, а посредством подщелачивания раствора до величины рН, равной 9,5-11,0, дополнительно проводят осаждение из десорбата двух- и трехвалентных радионуклидов.

Известен способ дезактивации отработавшей ионообменной смолы [патент РФ №2440631, опубликован 20.01.2012, включающий перевод сорбированных на ионообменной смоле радионуклидов в раствор кислых солей натрия, очистку дезактивирующего раствора от радионуклидов цезия на композиционном ферроцианидном сорбенте и корректировку рН. Перед очисткой дезактивирующего раствора от радионуклидов цезия раствор очищают от радионуклидов кобальта посредством добавления щелочи до диапазона рН 2,5÷11,7 и соосаждения радионуклидов кобальта с гидроокислами железа (III), десорбированного из ионообменной смолы кислым дезактивирующим раствором, с последующим отделением осадка. Очищенный дезактивирующий раствор возвращают в емкость исходного раствора. Корректируют рН до 0,5-4,0 путем добавления минеральных кислот и используют повторно для дезактивации свежей порции отработавшей ионообменной смолы.

Недостатками этих способов является недостаточная степень очистки ИОС от гамма-излучающих радионуклидов и технологические трудности, связанные с отделением и захоронением образующихся при осаждении гидроксида железа радиоактивных отходов, большое количество этих отходов.

Известен способ дезактивации отработанных ионообменных смол, загрязненных радионуклидами [патент РФ №2573826, опубликован 27.01.2016].

В данном способе отработанный катионит или смесь катионита и анионита дезактивируют раствором, содержащим ионы натрия в количестве 1-3 моль/л с рН=13. Очистку этого раствора от радионуклидов цезия проводят с применением селективного, устойчивого в щелочных средах катионита на основе резорцинформальдегидной смолы. Щелочной раствор, содержащий катионы натрия, обеспечивает очистку отработанных смол от радионуклидов цезия, сорбированных по ионообменному механизму и радионуклидов цезия и кобальта, находящихся в глинистых отложениях, образовавшихся на смоле. Очистку дезактивирующего раствора от радионуклидов цезия проводят путем контактирования десорбирующего раствора с ИОС и резорцинформальдегидной смолой (РФС), а затем из десорбирующего раствора удаляют радионуклиды кобальта, предпочтительно гидротермальной обработкой в автоклавах. Недостатками данного способа являются:

- большое количество образующихся радиоактивных отходов, поскольку для десорбции из ИОС радионуклидов коррозионной группы (Со, Fe, Mn и др.), образующих в щелочах нерастворимые гидроксиды необходимо использовать комплексообразователи (ЭДТА, например), а затем при переработке полученных радиоактивных растворов, содержащих закомплексованные радионуклиды, применять сложные и дорогие технологии разрушения комплексов для перевода радионуклидов в нерастворимое состояние (например озонирование или гидротермальное разрушение в автоклавах при температуре 250°C).

Наиболее близким к заявляемому способу является «Способ очистки ионообменных смол для их повторного использования» [патент США №3,849,196 опубликован 19.11.1974]. Способ заключается в обработке ионообменных смол в противотоке водой с различными добавками, в том числе кислот и щелочей, при воздействии ультразвукового излучения.

Задачей данного способа является удаление с поверхности смолы накопившихся осадков и пленок, в том числе радиоактивных, снижающих ее сорбционные свойства и мешающих дальнейшему использованию смолы. При этом не ставится целью полная дезактивация смолы и ее утилизация как нерадиоактивного отхода, отсутствует стадия переработки образующихся радиоактивных растворов.

Недостатком данного способа является то, что с его помощью нельзя достичь полной дезактивации смолы, так как ультразвуковая обработка используется для создания турбулентности потоков и классификации частиц смолы и осадка, а кавитационный эффект ультразвуковой обработки, который мог бы улучшить дезактивацию, не реализуется вследствие создания турбулентности. Кроме того, образующийся радиоактивный дезактивирующий раствор не перерабатывается и становится вторичным радиоактивным отходом.

Техническим результатом, на достижение которого направлено настоящее изобретение является полная дезактивация ионообменных смол и минимизация количества образующихся вторичных радиоактивных отходов.

Технический результат заявляемого изобретения достигается тем, что отработанные радиоактивные ионообменные смолы, обрабатывают растворами солей щелочных металлов, концентрацией от 3 до 5 моль/л, с рН от 8 до 12 с добавлением окислителя при одновременном воздействии на ИОС ультразвуковых колебаний интенсивностью от 2 до 5 Вт/см2 и частотой от 22 до 44 кГц при температуре от 50 до 80°C. Образовавшийся при десорбции радиоактивный раствор очищается селективными сорбентами, помещенными в фильтрационные колонки. Дезактивированная ионообменная смола передается на полигон промышленных отходов, а очищенный при помощи селективных сорбентов дезактивирующий раствор после корректировки состава направляется для повторного использования - очистки от радионуклидов следующей порции ИОС.

Обработка смол растворами солей щелочных металлов с концентрацией от 3 до 5 моль/л приводит к вытеснению и замещению сорбированных катионов радионуклидов катионами щелочных металлов. При концентрации солей менее 3 моль/л, вытесняющий эффект недостаточен, при концентрации солей выше 5 моль/л вытесняющий эффект не увеличивается, но увеличивается расход реагентов.

Ультразвуковая обработка вызывает возникновение в жидкой среде ударных волн и пульсирующих воздушных пузырьков, что порождает на микроуровне высокоэнергетическое гидродинамическое воздействие (эффект кавитации). Это позволяет активно воздействовать на протекание тепло-массообменных процессов в дезактивируемых ИОС и интенсифицировать обмен радиоактивных элементов, находящихся в ИОС, на катионы щелочных металлов, содержащиеся в дезактивирующем растворе. Дезактивирующий раствор как бы «вгоняется» в самые малодоступные капилляры ИОС («звукокапиллярный эффект»), происходит акустическая дезактивация пор ИОС (уничтожаются газовые пробки), время дезактивации ИОС снижается в десятки раз. Кроме того, переходящие в дезактивирующий раствор радионуклиды железа, кобальта, марганца и других элементов, окисляются под воздействием ультразвуковой кавитации в щелочных растворах с образованием нерастворимых оксидных соединений, которые хорошо отделяются путем фильтрации от дезактивирующего раствора при его очистке от радионуклидов цезия селективными сорбентами, загруженными в фильтрационные колонки. При рН менее 8 образование нерастворимых оксидных соединений происходит очень медленно либо не происходит совсем, при рН более 12 возможно частичное растворение образующихся осадков.

Использование ультразвуковой обработки интенсивностью менее 2 Вт/см2 и частотой менее 22 кГц практически не улучшает дезактивацию вследствие незначительного кавитационного эффекта, повышение интенсивности выше 5 Вт/см2 и частоты выше 44 кГц приводит к снижению влияния кавитационного эффекта на степень дезактивации, так как пузырьки образуются меньшего диаметра и при «схлапывании» каждого пузырька выделяется меньше энергии.

Особенно эффективна ультразвуковая обработка при температуре от 50 до 80°C. При повышенной температуре происходит ускоренное образование кавитационных пузырьков. При температуре выше 80°C эффект кавитации снижается вследствие парообразования.

Введение окислителя в дезактивирующий раствор ускоряет процесс окисления и образования нерастворимых оксидных соединений кобальта, железа и марганца.

Образующиеся в рамках указанных параметров процесса оксидные соединения железа, кобальта и марганца, являющиеся вторичными радиоактивными отходами, имеют плотную структуру, в отличие от рыхлых, плохо отфильтровываемых, объемных свежеосажденных гидроксидов этих элементов, образующихся в щелочных растворах в иных условиях. Поэтому они не забивают фильтрационную колонну с сорбентом и занимают минимальный объем.

Технических решений, совпадающих с совокупностью существенных признаков заявляемого изобретения, не выявлено, что позволяет сделать вывод о соответствии заявляемого изобретения такому условию патентоспособности как «новизна».

Заявляемые существенные признаки, предопределяющие получение указанного технического результата, явным образом не следуют из уровня техники, что позволяет сделать вывод о соответствии заявляемого изобретения такому условию патентоспособности как «изобретательский уровень».

Условие патентоспособности «промышленная применимость» подтверждается примерами конкретного выполнения, изложенного в разделе «Сведения, подтверждающие возможность осуществления изобретения».

Примеры реализации заявляемого способа представлены ниже.

Пример 1.

100 мл смеси, состоящей из отработанных ионообменных смол (50% КУ-2 и 50% АВ-17) с исходной удельной активностью 137Cs - 1,87⋅105 Бк/л, 134Cs - 2,4⋅104 Бк/л, 60Co - 4,5⋅104 Бк/л, 59Fe - 1,6⋅104 Бк/л, 54Mn - 2,4⋅104 Бк/л поместили в металлическую камеру объемом 1 литр, залили 300 мл дезактивирующего раствора, содержащего 2 моль/л NaNO3 с рН=8 и подвергли ультразвуковой обработке интенсивностью 2 Вт/см2 с частотой ультразвуковых колебаний 20 кГц в течение 5 минут при температуре 40°C, после чего использованный дезактивирующий раствор удалили из камеры, промыли смолы 300 мл исходного (чистого) дезактивирующего раствора, удалили раствор из камеры и высушили ИОС в течение 10 минут, включив ультразвуковую обработку в вышеуказанном режиме и подав в камеру воздух, нагретый до 60°C. Суммарная активность гамма-излучающих радионуклидов в дезактивированных ИОС составила 1270 Бк/л, что не дает возможность передать их на полигон химических отходов.

Пример 2.

100 мл смеси, состоящей из отработанных ионообменных смол (50% смола КУ-2 и 50% смола АВ-17) с исходной удельной активностью 137Cs -1,87⋅105 Бк/л, 134Cs - 2,4⋅104 Бк/л, 60Co - 4,5⋅104 Бк/л, 59Fe - 1,6⋅104 Бк/л, 54Mn - 2,4⋅104 Бк/л поместили в металлическую камеру объемом 1 литр, залили 300 мл дезактивирующего раствора, содержащего 3 моль/л NaNO3 и 2% H2O2 при рН=9 и использовали ультразвуковую обработку интенсивностью 2 Вт/см2 с частотой ультразвуковых колебаний 22 кГц в течение 3 минут при температуре 60°C, после чего использованный дезактивирующий раствор удалили из камеры, промыли смолы 300 мл исходного (чистого) дезактивирующего раствора, удалили раствор из камеры и высушили смолу в течение 10 минут, включив ультразвуковую обработку в вышеуказанном режиме и подав в камеру воздух, нагретый до 60°C. Суммарная активность гамма-излучающих радионуклидов в дезактивированных ИОС полностью отсутствовала. Дезактивирующий раствор, содержащий десорбированные из ИОС радионуклиды цезия и осадки оксидов радионуклидов коррозионной группы (Co, Fe, Mn и др.), профильтровали через колонку с 10 мл гранулированного фероцианида никеля. На выходе из колонки активность раствора составляла менее 10 Бк/л. После корректировки состава раствора (по результатам анализа) его направили на дезактивацию следующей порции ИОС.

Пример 3.

100 мл смеси, состоящей из отработанных ИОС (50% КУ-2 и 50% АВ-17) с исходной удельной активностью 137Cs - 1,87⋅105 Бк/л, 134Cs - 2,4⋅104 Бк/л, 60Co - 4,5⋅104 Бк/л, 59Fe - 1,6⋅104 Бк/л, 54Mn - 2,4⋅104 Бк/л поместили в металлическую камеру объемом 1 литр, залили 300 мл дезактивирующего раствора, имеющего рН=9,2 и содержащего 3 моль/л NaCl, 3% KMnO4, использовали ультразвуковую обработку интенсивностью 3 Вт/см2 с частотой ультразвуковых колебаний 44 кГц в течение 3 минут, при температуре 50°C, после чего использованный дезактивирующий раствор удалили из камеры, промыли ИОС 300 мл исходного (чистого) дезактивирующего раствора, удалили раствор из камеры и высушили ИОС в течение 10 минут, включив ультразвуковую обработку в вышеуказанном режиме и подав в камеру воздух, нагретый до 60°C. Измерения показали полное отсутствие в обработанных ИОС радиоактивных веществ. Дезактивирующий раствор, содержащий десорбированные из ИОС радионуклиды цезия и осадки оксидов радионуклидов коррозионной группы (Co, Fe, Mn и др.), профильтровали через колонку с 10 мл гранулированного фероцианида никеля. На выходе из колонки активность раствора составляла менее 10 Бк/л. После корректировки состава раствора (по результатам анализа) его направили на дезактивацию следующей порции ИОС.

Пример 4.

100 мл смеси, состоящей из отработанных ИОС (50% КУ-2 и 50% АВ-17) с исходной удельной активностью 137Cs - 1,87⋅105 Бк/л, 134Cs - 2,4⋅104 Бк/л, 60Co - 4,5⋅104 Бк/л, 59Fe - 1,6⋅104 Бк/л, 54Mn - 2,4⋅104 Бк/л поместили в металлическую камеру объемом 1 литр, залили 300 мл дезактивирующего раствора, имеющего рН=9,4 и содержащего 3 моль/л Na3PO4, 3% персульфата натрия, использовали ультразвуковую обработку интенсивностью 3 Вт/см2 с частотой ультразвуковых колебаний 22 кГц в течение 3 минут при температуре 70°C, после чего использованный дезактивирующий раствор удалили из камеры, промыли смолу 300 мл исходного (чистого) дезактивирующего раствора, удалили раствор из камеры и высушили ИОС в течение 10 минут, включив ультразвуковую обработку в вышеуказанном режиме и подав в камеру воздух, нагретый до 60°C. Измерения показали полное отсутствие в обработанных ИОС радиоактивных веществ. Дезактивирующий раствор, содержащий десорбированные из ИОС радионуклиды цезия и осадки оксидов радионуклидов коррозионной группы (Co, Fe, Mn и др.), профильтровали через колонку с 10 мл гранулированного фероцианида никеля. На выходе из колонки активность раствора составляла менее 10 Бк/л. После корректировки состава раствора (по результатам анализа) его направили на дезактивацию следующей порции ИОС.

Колонку с сорбентом в примерах 2-4 использовали для очистки не менее 5 порций дезактивирующего раствора. Эффективность очистки раствора и скорость фильтрации при этом не снижалась.

1. Способ дезактивации радиоактивных ионообменных смол, включающий обработку отработанных радиоактивных ионообменных смол дезактивирующим раствором и очистку дезактивирующего раствора от радионуклидов, отличающийся тем, что обработку радиоактивных ионообменных смол проводят дезактивирующим раствором солей щелочных металлов с концентрацией от 3 до 5 моль/л при рН от 8 до 12 с добавлением окислителя при одновременном воздействии на смолу ультразвуковыми колебаниями с интенсивностью от 2 до 5 Вт/см2 и частотой от 22 до 44 кГц, при температуре от 50 до 80°C.

2. Способ по п. 1, отличающийся тем, что дезактивирующий раствор содержит ионы натрия и/или калия, внесенные в виде гидроксидов, хлоридов, нитратов, сульфатов или фосфатов.

3. Способ по п. 1, отличающийся тем, что в качестве окислителя может использоваться перекись водорода, перманганат калия, персульфат натрия, диоксид хлора, озон.

4. Способ по п. 1, отличающийся тем, что дезактивирующий раствор после очистки от радионуклидов с помощью селективных сорбентов и корректировки состава используют повторно.

5. Способ по п. 1, отличающийся тем, что дезактивированную ионообменную смолу обезвоживают горячим воздухом и ультразвуковой обработкой в том же аппарате, в котором проводили ее дезактивацию.



 

Похожие патенты:

Группа изобретений относится к адсорбентам радиоактивного материала. Адсорбент радиоактивного материала для адсорбции радиоактивного стронция в воде содержит порошок титаната, представленного химической формулой K2Ti2O5.

Группа изобретений относится к водоподготовке и может быть использована в системах снабжения питьевой водой населенных пунктов, санаториев, домов отдыха, коттеджей, индивидуальных домовладений, располагающих подземными радоновыми водами с выходами их на поверхность.

Группа изобретений относится к сорбентам для очистки технологических вод и радиоактивных отходов. Сорбционный материал для извлечения радионуклидов стронция, представляющий собой композит силиката бария игольчатой структуры и пористого кристаллического сульфата бария.

Изобретение относится к радиоаналитической химии и может быть использовано для контроля содержания радионуклидов в пресной и морской воде, в пробах различных технологических растворов.

Заявленное изобретение относится к способу измерения концентрации 137Cs в водной среде и предназначено для мониторинга радиоактивного загрязнения водоемов. В заявленном способе содержание 137Cs определяют методом прямой бета-радиометрии после его концентрирования на дисковых мини адсорберах, где используемая масса сорбента в 100 раз меньше, чем для гамма-спектрометрического измерения содержания 137Cs.

Группа изобретений относится к способам удаления радиоактивного цезия. Способ удаления радиоактивного цезия, осуществляется с помощью гидрофильной смоляной композиции.

Изобретение относится к цеолитным адсорбентам. Адсорбент метилйодида включает цеолит, содержащий по меньшей мере один металл, адсорбирующий йодид, или его соединение.

Изобретение относится к полимерным композициям, применяемым в ядерной технике, а именно для кондиционирования низко- и среднеактивных отработанных ионообменных смол (ИОС).

Изобретение относится к способу удаления радиоактивного цезия или радиоактивного йода и радиоактивного цезия, а также к гидрофильной смоляной композиции, применяемой для удаления радиоактивного цезия или радиоактивного йода и радиоактивного цезия из отработанной радиоактивной жидкости или твердого вещества, полученных в процессе работы атомной электростанции или установки по переработке отработанного ядерного топлива.

Изобретение относится к области сорбционной технологии извлечения радионуклидов, а именно к способу извлечения микроконцентраций урана из водных растворов. Способ проводят путем сорбции с использованием тонкослойного неорганического сорбента на основе гидроксида металла, осажденного на природное органическое вещество.

Группа изобретений относится к способу и оборудованию для удаления радиоактивного стронция из сточных вод. Способ обработки сточных вод включает смешение сточных вод с порошкообразным титанатом щелочного металла в реакционном резервуаре, снабженном мешалкой, для твердо-жидкого разделения порошкообразного титаната щелочного металла, на котором адсорбирован радиоактивный стронций, щелочную агрегацию для осаждения стронция в сточных водах, где карбонат-ионы добавляют в количестве, эквивалентном от 1,0 до 2,0 раз к количеству стронция. В сточные воды дополнительно добавляют щелочь в таком количестве, чтобы рН смеси составлял от 9,0 до 13,5. Порошкообразный титанат щелочного металла добавляют в ходе стадии щелочной агрегации или после стадии щелочной агрегации. Имеется также вариант выполнения способа, а также оборудование для обработки сточных вод. Группа изобретений позволяет эффективно удалять радиоактивный стронций из сточных вод. 4 н. и 10 з.п. ф-лы, 5 ил., 2 табл., 8 пр.

Изобретение относится к мембране на подложке, к способу получению мембраны и способу выделению с помощью указанной мембраны твердых частиц и катионов металлов, более точно, к способу фильтрации твердых частиц и экстракции катионов металлов, в частности радиоактивных, содержащихся в жидкости. Мембрана на подложке содержит твердую пористую неорганическую фильтрационную мембрану, нанесенную на твердую пористую неорганическую подложку. Мембрана на подложке содержит наночастицы металлокоординационного полимера с CN-лигандами, содержащего катионы Mn+, где М есть переходный металл, и n равно 2 или 3; и анионы Alk+y[M'(CN)m]x-, где Alk означает щелочной металл, y равно 0, 1 или 2, М' означает переходный металл, x равно 3 или 4, и m равно 6 или 8. Указанные катионы Mn+ координационного полимера соединены металлоорганической или координационной связью с органической группой органической прививки, химически связанной с поверхностью фильтрационной мембраны, внутри пор фильтрационной мембраны и, возможно, внутри пор подложки. Способ выделения по меньшей мере одного катиона металла и твердых частиц из жидкой среды, в которой они находятся, с применением указанной мембраны на подложке, включает контакт потока жидкой среды с первой противоположной подложке стороной мембраны на подложке. Вторая часть потока жидкой среды, не прошедшая через мембрану на подложке, собирается на первой стороне мембраны и образовывает реагент, обогащенный твердыми частицами. Катион металла иммобилизован на поверхности твердой пористой неорганической фильтрационной мембраны, внутри пор мембраны и, возможно, внутри пор твердой пористой неорганической подложки. Изобретение позволяет с высокой эффективностью осуществить одновременно отделение твердых частиц и катионов металлов, в частности радиоактивных, содержащихся в жидкости. 3 н. и 25 з.п. ф-лы, 8 ил, 3 табл, 4 пр.
Наверх