Абонентский ввод системы теплоснабжения

Изобретение относится к области централизованного теплоснабжения для производственных и общественных зданий имеющих резко переменную часовую или суточную потребность в теплоте, подаваемой по двухтрубным тепловым сетям. Абонентский ввод системы теплоснабжения здания содержит подающий и обратный трубопроводы с расположенными на них задвижками, манометрами, грязевиками, термометрами, тепломерами, ответвлениями на нужды отопления, вентиляции и на разбор горячей воды из тепловой сети. При этом в ответвлении на нужды отопления установлены параллельные трубопроводы с размещенными на них кавитационными ограничителями расхода и расположенными до них нормально-открытыми запорными клапанами, при этом на одном из параллельных трубопроводов перед кавитационным ограничителем расхода запорный клапан отсутствует, причем параллельные трубопроводы с клапанами управляются от контроллера с таймером, подающим сигнал клапанам на их закрытие или открытие в определенный период. Это позволяет повысить эффективность работы абонентских вводов систем теплоснабжения зданий за счет дорегулирования количества подаваемой тепловой энергии в системы зданий по эксплуатационным показателям в периоды резко переменных тепловых нагрузок. 2 ил.

 

Изобретение относится к области централизованного теплоснабжения и может использоваться в производственных и общественных зданиях, имеющих резко переменную часовую или суточную потребность в теплоте на нужды отопления, вентиляции и горячего водоснабжения при подаче тепловой энергии в системы по двухтрубным тепловым сетям.

В централизованных системах теплоснабжения как промышленных объектов так и жилых районов, подача теплоты в системы отопления зданий осуществляется по двухтрубным тепловым сетям (ТС) преимущественно методом центрального качественного регулирования по нагрузке отопления. В абонентском вводе здания ее отпуск в инженерные системы осуществляется одновременно на нужды отопления (О), вентиляции (В), горячего водоснабжения (ГВС). Потребление теплоты зданием как в течение суток, так и в течение всего отопительного сезона на нужды О и В зависит от климатических условий, а на нужды ГВС определяется технологическими режимами производств, длительностью рабочих смен предприятий либо характером водопотребления общественного здания, т.е., практически не зависит от колебания температуры наружного воздуха [1].

На ответвлениях двухтрубных ТС в системы отопления (СО), системы вентиляции (СВ) и системы ГВС производственных и общественных зданий в результате резкого колебания потребления теплоты в СВ и ГВС возникают колебания теплового потока, влияющие на гидравлический режим СО.

Колебания потоков теплоты, поступающих в СО здания, происходят в результате колебания перепадов давления, вызванных резко переменным потреблением теплоты в течение суток (недели) СВ. Переменное потребление теплоты в системах вентиляции в течение суток вызвано не только продолжительностью их работы в течение 8…16 часов, но и необходимостью выдерживать постоянную температуру приточного воздуха при суточных (недельных) колебаниях температуры наружного воздуха. Резко переменное теплопотребление зданий вызвано и работой душевых установок промышленных предприятий с залповым потреблением горячей воды по окончании каждой рабочей смены. При этом происходят колебания давления в трубопроводах перед ответвлениями и колебания теплового потока, подаваемого в СО.

Таким образом, резко переменная потребность в теплоте СВ и ГВС влияют на гидравлические режимы СО и определяют несоответствие подачи теплоты в отопительные системы зданий их тепловым потребностям.

Известен абонентский ввод системы теплоснабжения зданий [2], содержащий подающий и обратный трубопроводы, элеватор, задвижки, расположенные до и после элеватора, при этом элеватор установлен параллельно задвижке с электроприводом на подающем трубопроводе и снабжен регулятором температуры, который соединен с датчиками температуры воздуха внутри и снаружи здания и датчиками температуры воды на подающем и обратном трубопроводах, а также электрически связан с электроприводом задвижки на подающем трубопроводе.

Недостатками предлагаемой конструкции абонентского ввода является низкая оперативность управления системой и неэффективность регулирования, т.к. в качестве регулирующего органа применена электрифицированная задвижка, которая является запорной, а не регулирующей арматурой. Также следует отметить, что при резко переменной тепловой нагрузке даже в случае применения вместо электрифицированной задвижки регулирующего клапана недостаточна эффективность регулирования, т.к. при параллельном включении арматуры и элеваторного узла будет наблюдаться нестабильная работа элеватора. Известно, что водоструйный элеватор работает практически при постоянном коэффициенте смешения и при значительной постоянной величине перепада давления в тепловой сети между прямым и обратным трубопроводами (0,1…0,15 МПа) [1]. В режиме резко переменной тепловой нагрузки и при открытии арматуры на параллельной линии, давление и, как следствие, перепад давления перед элеватором упадет, что приведет к неуправляемому изменению коэффициента смешения вплоть до прекращения работы элеватора и превращения его в перемычку (шунт). При этом теплоноситель, проходящий через водоструйный элеватор (либо его часть) будет идти в обратный трубопровод, минуя систему отопления, что делает систему отопления нерегулируемой.

Наиболее близким техническим решением является принципиальная схема местного теплового пункта системы теплоснабжения здания при непосредственном присоединении системы водяного отопления к двухтрубным системам теплоснабжения с центральным качественным регулированием [3], содержащая подающий и обратный трубопроводы, задвижки, манометры, грязевики, термометры, обратный клапан, тепломер, ответвление на нужды вентиляции, ответвление на разбор горячей воды из ТС и ответвление в систему отопления с установленным на прямом трубопроводе регулирующим клапаном, а также регулятором давления - на обратном трубопроводе.

Недостатком является перерасход теплоты в системах отопления зданий в периоды резко переменной тепловой нагрузки в теплопотребляющих системах зданий, когда в отапливаемых помещениях допускается снижение нормативно необходимой температуры внутреннего воздуха, создаваемого системами отопления, до допустимых значений. Понижение температуры возможно, например, в выходные и праздничные дни, в ночное время, в нерабочие часы суток. Дорегулирование количества тепловой энергии, подаваемой в здание изменением (уменьшением) расхода теплоносителя, поступающего из тепловой сети в элеватор, трудноосуществимо без изменения конструктивных характеристик его сопла и также невозможно из-за наличия регулирующего клапана для поддержания постоянства расхода воды.

Задачей заявляемого изобретения является повышение эффективности работы абонентских вводов систем теплоснабжения зданий, подключенных к двухтрубным централизованным системам с центральным качественным регулированием, при подаче теплоты на нужды О, В и ГВС и резко переменных тепловых нагрузках в теплопотребляющих системах в рабочие и нерабочие часы суток, в выходные и праздничные дни, а также в периоды стояния температуры наружного воздуха, когда температура воды в тепловой сети определяется температурой воды в системах горячего водоснабжения и держится постоянной. Повышение эффективности достигается дорегулированием количества подаваемой тепловой энергии в системы отопления зданий по эксплуатационным показателям в периоды резко переменных тепловых нагрузок. Для поддержания в периоды переменных нагрузок допустимой температуры внутреннего воздуха в отапливаемых помещениях дорегулирование осуществляется оперативным изменением циркуляционного расхода воды, который поступает в системы отопления из подающего трубопровода тепловой сети, и обеспечением постоянства расхода в каждом периоде резко переменной тепловой нагрузки.

Поставленная задача решается тем, что известный абонентский ввод, подающий тепловую энергию в здание, содержащий подающий и обратный трубопроводы, задвижки, манометры, грязевики, термометры, обратный клапан, тепломеры, ответвления на нужды отопления, вентиляции и на разбор горячей воды из ТС, в ответвлении, подающем тепловую энергию в систему отопления, установлены параллельные трубопроводы с размещенными на них кавитационными ограничителями расхода и расположенными до них нормально-открытыми запорными клапанам, при этом на одном из параллельных трубопроводов перед кавитационным ограничителем расхода запорный клапан отсутствует. Ограничители совместно с клапанами оперативным закрытием и открытием параллельных трубопроводов по сигналам от таймера обеспечивают в системе отопления в каждый период резко переменного теплопотребления (в течение суток, дня недели и т.д.), соответствующий постоянный расход циркуляционной воды. Участок трубопровода с ограничителем расхода без запорного клапана в периоды малой потребности в теплоте (все клапаны закрыты) обеспечивает стабильный циркуляционный расход в системе отопления для поддержания в этот период допустимой температуры внутреннего воздуха и исключает гидравлический удар в системе отопления при работе клапанов.

В заявляемом абонентском вводе системы теплоснабжения технико-экономический результат заключается в повышении эффективности работы системы отопления здания и достигается оперативным дорегулированием количества подаваемой теплоты в системы отопления зданий в периоды резко переменной нагрузки в отдельные часы суток, выходные и праздничные дни и т.д. и поддержанием в эти периоды допустимой температуры внутреннего воздуха в отапливаемых помещениях изменением количества подаваемой тепловой энергии за счет включения или выключения параллельных участков трубопроводов запорными клапанами по сигналу от контроллера с таймером и обеспечения экономии теплоты за счет лимитирования расхода теплоносителя, подаваемого в системы отопления зданий из двухтрубной тепловой сети и поддержания его стабильности в каждом периоде резко переменной нагрузки. Дорегулирование отпуска теплоты на нужды отопления осуществляется применением не регулирующей, а запорной арматуры и кавитационных ограничителей, обеспечивающих лимитирование и стабилизацию расхода циркуляционной воды. Известно, что регулирующая арматура более сложна в сравнении с запорной и является более дорогостоящей. Изменение количества теплоты подаваемой в системы отопления зданий расходом теплоносителя и его стабилизация осуществляется в периоды резко переменной тепловой нагрузки с учетом нерабочего и ночного времени, выходных и праздничных дней, а также в периоды, когда температура воды в тепловой сети определяется и поддерживается постоянной температурой воды в системах горячего водоснабжения.

На фиг. 1 изображена схема предлагаемого абонентского ввода системы теплоснабжения здания.

Абонентский ввод содержит трубопроводы для подвода горячей воды из ТС и отвода охлажденной воды в ТС 1, запорную арматуру 2, манометры 3, грязевики 4, тепломеры 5, ответвление для подачи тепловой энергии на нужды системы вентиляции СВ 6, ответвление 7 с циркуляционным трубопроводом 8 подающие теплоту на нужды горячего водоснабжения ГВС, ответвление 9, подающее поток теплоты в систему отопления здания. По ходу движения горячего теплоносителя (воды) на ответвлении, подающем теплоноситель в отопительные приборы 10 СО, установлены параллельные трубопроводы 11 с размещенными кавитационными ограничителями расхода теплоносителя 12, 13, 14. Часть трубопроводов оснащена нормально-открытыми запорными клапанами 15. По ходу движения теплоносителя клапаны установлены до параллельно расположенных кавитационных ограничителей расхода. Контроллер с таймером 16 предназначен для управления запорными клапанами. На ответвлении, подающем теплоту в систему горячего водоснабжения, оснащенном водоразборной арматурой 17, установлены трехходовой клапан 18 и обратный клапан 19. На трубопроводе, подающем тепловую энергию в калорифер 20 СВ, установлен регулирующий клапан 21. На трубопроводах подвода горячей воды из ТС и отвода охлажденной воды в ТС смонтированы термометры 22. В абонентских вводах систем теплоснабжения производственных и общественных зданий в зависимосити от технологического режима работы предприятия, графика рабочих смен, условий и характера эксплуатации общественного здания и т.д. на ответвлении в систему отопления может устраиваться несколько (два, три и более) параллельных участков трубопроводов с кавитационными ограничителями расхода воды и запорными клапанами и один параллельный участок без запорного клапана.

Абонентский ввод системы теплоснабжения преимущественно производственных или общественных зданий работает следующим образом.

В часы максимального потребления теплоты по подающему трубопроводу 1 из тепловой сети в здание идет суммарный максимальный расход теплоносителя. Часть теплоносителя поступает по ответвлению 6 в калорифер 20 СВ, часть идет по ответвлению 7 на водопотребление в водоразборную арматуру 17 системы ГВС и оставшаяся часть по ответвлению 9 подается в отопительные приборы 10 СО здания. При этом запорные клапаны 15 на всех параллельных трубопроводах 11 находятся в открытом положении. В этот период в систему отопления поступает максимальный расход теплоносителя, определяемый расчетной тепловой потребностью здания. Максимальный расход теплоносителя в системе отопления обеспечивается суммарной пропускной способностью всех ограничителей, установленных на параллельных трубопроводах.

Конструкция и геометрия каждого кавитационного ограничителя расхода 12, 13, 14 установленного на параллельном трубопроводе 11 определяется пропускной способностью параллельного трубопровода и рассчитывается на подачу тепловой энергии, которая необходима для поддержания заданной температуры воздуха внутри помещений производственного или общественного здания, в тот или иной период переменной тепловой потребности.

Кавитационный ограничитель стабилизирует расход и сохраняет его постоянным, независимо от изменения перепада давления на входе и выходе из ограничителя, и при установке его на ответвлении трубопровода в систему отопления обеспечивает стабильную подачу необходимого расхода в СО независимо от разбора воды в системе ГВС и включении или выключении калориферов СВ. Условия работы ограничителя приведены в [4]. Кривая, характеризующая стабильность диапазона расхода через кавитационное устройство от разных соотношений давлений на входе и выходе, показана на фиг. 2.

Каждый из кавитационных ограничителей расхода рассчитан на пропускную способность отдельного параллельного трубопровода. При этом количество параллельных трубопроводов с кавитационными ограничителями расхода и запорными клапанами зависит от необходимых режимов регулирования и диапазона колебания теплопотребности здания (на фиг. 1 показано два параллельных трубопровода). Расходы воды G1, G2, G3, …, Gn либо сумма отдельных двух или более расходов соответствуют той или иной тепловой нагрузке в периоды ее резких колебаний и транспортируют количество тепловой энергии Q1, Q2, Q3, …, Qn, необходимое для поддержания заданной температуры внутреннего воздуха производственного или общественного здания в тот или иной период. Наименьший циркуляционный расход теплоносителя, транспортирующий количество необходимой тепловой энергии, например Q3, для поддержания допустимой температуры внутреннего воздуха в помещениях производственного или общественного здания в периоды минимального теплопотребления, обеспечивается параллельным участком трубопровода с ограничителем расхода не оснащенным запорной арматурой. При этом пропускная способность всех параллельных участков трубопроводов Gобщ рассчитана таким образом, чтобы в сумме они пропускали необходимое количество теплоносителя для подачи тепловой энергии в здания в расчетных условиях и обеспечивали достижение в производственных или общественных помещениях нормируемой температуры внутреннего воздуха. В условиях эксплуатации абонентского ввода здания при резко переменном разборе горячей воды в системе ГВС, включении и выключении калориферов в СВ количество теплоносителя, поступающего в ответвление на СО, изменяется, т.к. начинает изменяться перепад давлений в подающем и обратном трубопроводах ответвления 9 системы отопления здания.

Так как абонентский ввод рассчитан на условия, когда потребление тепловой энергии максимально, т.е., когда одновременно потребляется теплота на нужды О, В и ГВС при снижении теплопотребления, например, перестали работать душевые установки предприятия, выключились системы приточной вентиляции в общественном или производственном здании, в ответвлении ввода на систему отопления возрастает давление в подающем трубопроводе и возрастает перепад давления. В результате этого в систему отопления устремляется расход воды, транспортирующей поток тепловой энергии, превышающий потребность здания в теплоте, что приводит к ее перерасходу.

При наступлении периода времени, когда возможно резкое понижение потребности здания в теплоте (понижение температуры внутреннего воздуха в отапливаемых помещениях до минимально допустимой температуры), т.е. нерабочее время или выходные и праздничные дни или в периоды, когда температура сетевой воды определяется температурой воды в системе ГВС, в ответвления абонентских вводов систем отопления при отсутствии в них устройств по дорегулированию отпуска теплоты, в здания также поступает лишнее количество тепловой энергии. В заявляемом техническом решении в периоды времени, когда потребность в теплоте резко уменьшается от контроллера с таймером 16, поступает сигнал, в виде электрического импульса, подаваемого на один, другой или все запорные клапаны 15. Клапанами осуществляется выключение одного, другого или всех параллельных трубопроводов, т.е. в каждый соответствующий период изменяющейся потребности в теплоте происходит уменьшение расхода теплоносителя путем отключения параллельных участков, на которых установлены кавитационные ограничители расхода 12, 13. В систему отопления начинает поступать требуемое количество горячего теплоносителя, обеспечивающего тепловой поток необходимый для поддержания нормативной температуры внутреннего воздуха в периоды резкого снижения потребности в теплоте, в ночное время, выходные или праздничные дни. При этом для поддержания допустимой температуры воздуха внутри помещений отапливаемого здания по параллельному трубопроводу с кавитационным ограничителем расхода, на котором не установлен запорный клапан, в систему отопления поступает минимальное количество горячего теплоносителя G3. В периоды резко возрастающей тепловой нагрузки, в зависимости от ее доли по сигналу от таймера происходит открытие одного, двух или всех запорных клапанов и в систему оперативно подается больший расход теплоносителя и тепловой энергии. Таким образом, в зависимости от требуемого теплового потока в разные часы суток, недели и т.д. оперативно меняется подача тепловой энергии в систему отопления здания. В часы поступления из тепловой сети избытка теплоты кавитационные ограничители совместно с клапанами лимитируют (ограничивают) расход теплоносителя либо увеличивают поток теплоты в часы недостатка, тем самым обеспечивая дорегулирование ее отпуска и обеспечивая ее экономию, оперативно понижая и повышая подачу ее в систему отопления в соответствии с теплопотребностью здания. Отсутствие запорного клапана перед кавитационным ограничителем расхода на одном из параллельных трубопроводов 11 позволяет не только обеспечивать подачу минимального циркуляционного расхода, но и избежать возникновения прямых гидравлических ударов в трубопроводах абонентского ввода в периоды закрытия клапанов 15.

В часы работы системы, когда в помещениях здания требуется более высокая температура внутреннего воздуха, осуществляется увеличение расхода воды в системе отопления путем открытия клапанов. От контроллера с таймером 16 поступает сигнал на открытие одного, двух или всех запорных клапанов 15 одновременно. При этом обеспечивается поступление в систему отопления большего количества горячей воды из тепловой сети и большего количества теплоты.

Технический эффект предлагаемого изобретения преимущественно для производственных и общественных зданий заключается в том, что путем дорегулирования потока тепловой энергии, подаваемой в систему отопления по эксплуатационным показателям в рабочие и нерабочие часы суток, выходные и праздничные дни, а также в периоды стояния температуры наружного воздуха, когда температура воды в тепловой сети определяется температурой воды в системах горячего водоснабжения зданий и держится постоянной, т.е. в периоды резко переменной потребности здания в теплоте на нужды вентиляции, горячего водоснабжения и отопления, оперативно достигается снижение расхода воды и теплоты, поступающих в систему отопления здания из подающего трубопровода тепловой сети. При этом поддерживается допустимая температура внутреннего воздуха в помещениях здания в соответствии с изменяющейся температурой наружного воздуха.

Использованные источники

1. Теплоснабжение: Учебник для вузов А.А. Ионин, Б.М. Хлыбов, В.Н. Братенков, Е.Н. Терлецкая. Под ред. А.А.Ионина. - М.: Стройиздат, 1982-336 с., ил.

2. Авторское свидетельство RU 92716 U1, МПК F24D 3/00, 2009.

3. Внутренние санитарно-технические устройства. В 3 ч. Ч. 1. Отопление / В.Н. Богословский, Б.А. Крупнов, А.Н. Сканави и др.; Под ред. И.Г. Староверова, Ю.И. Шиллера. - 4-е изд., перераб, и доп. - М.: Строиздат, 1990. - 344 с., ил. с. 74, 75.

4. Машиностроительная гидравлика. Башта Т.М. М.: Машиностроение, 1971. - 671 с., ил. с. 49.

Абонентский ввод системы теплоснабжения здания, содержащий подающий и обратный трубопроводы с расположенными на них задвижками, манометрами, грязевиками, термометрами, тепломерами, ответвлениями на нужды отопления, вентиляции и на разбор горячей воды из тепловой сети, отличающийся тем, что в ответвлении на нужды отопления установлены параллельные трубопроводы с размещенными на них кавитационными ограничителями расхода и расположенными до них нормально-открытыми запорными клапанами, при этом на одном из параллельных трубопроводов перед кавитационным ограничителем расхода запорный клапан отсутствует, причем параллельные трубопроводы с клапанами управляются от контроллера с таймером, подающим сигнал клапанам на их закрытие или открытие в определенный период.



 

Похожие патенты:

Изобретение относится к области автоматического регулирования и управления, в частности к устройствам для регулирования температуры воздуха в помещениях, отапливаемых от систем открытого теплоснабжения.

Изобретение относится к теплоэнергетике и предназначено для обеспечения электрической энергией устройств автоматики и исполнительных органов. Сущность: система включает высокотемпературный и низкотемпературный источники тепла, тепловой сток во внешнюю среду, блок автоматики, высокотемпературные и низкотемпературные термоэлектрические преобразователи (ТЭП), горячие спаи которых приведены в тепловой контакт с высокотемпературными и низкотемпературными источниками тепла соответственно, а холодные спаи - в тепловой контакт с внешней средой.

Устройство для автоматического управления теплопотреблением здания в системе центрального теплоснабжения включает последовательно соединенные и образующие замкнутый контур источник тепловой энергии, импульсный регулятор расхода теплоносителя в подающей магистрали, систему отопления здания и блок измерения температуры теплоносителя в обратной магистрали, а также блок измерения температуры наружного воздуха, блок управления, блок задания периода регулирования, блок задания минимального шага регулирования, блок задания шага изменения длительности импульса теплоносителя в каждом периоде регулирования расхода теплоносителя, блок коррекции знака шага изменения длительности импульса теплоносителя, блок задания температуры теплоносителя в обратной магистрали, блок задания шага изменения температуры теплоносителя в обратной магистрали за период регулирования расхода теплоносителя при минимальном значении длительности импульса теплоносителя, блок вычисления коэффициента кратности коррекции шага изменения длительности импульса теплоносителя и блок сравнения.

Изобретение относится к централизованному теплоснабжению жилых, общественных и промышленных зданий. Технический результат по снижению энергозатрат достигается тем, что устройство для автоматизированного регулирования расхода тепла на отопление в системах теплоснабжения содержит подающий и обратный трубопроводы, перемычку, причем внутренняя поверхность перемычки, соединяющей подающий и обратный трубопроводы, покрыта наноматериалом в виде стеклоподобной пленки.

Заявленное изобретение относится к области использования тепловой энергии для обогрева зданий, с индивидуальным котлом. Энергонезависимая система отопления на три этажа с использованием многослойных потоков воды для осуществления циркуляции содержит котел, установленный на первом этаже, соединенный с подающим розливом, расположенным над полом или в полу второго этажа, подающий розлив закольцовывается стояком с обратным розливом, расширительный бак, стояки и приборы отопления.

Изобретение относится к области теплоэнергетики и может быть использовано в системах теплоснабжения. Способ работы закрытой системы теплоснабжения, по которому сетевую воду готовят на ТЭЦ и по подающему трубопроводу теплосети через тепловой пункт направляют в трубопроводы систем отопления и горячего водоснабжения потребителей, температуру сетевой воды в подающем трубопроводе теплосети регулируют на ТЭЦ в зависимости от температуры наружного воздуха по графику центрального качественного регулирования без нижнего излома температурного графика, вернувшуюся от потребителей сетевую воду по обратному трубопроводу теплосети направляют на ТЭЦ, идущую на горячее водоснабжение воду последовательно нагревают в поверхностном подогревателе нижней ступени сетевой водой из обратного трубопровода теплосети, затем в конденсаторе теплонасосной установки, который используют в качестве подогревателя верхней ступени, отличающийся тем, что испаритель теплонасосной установки включают по греющей среде в подающий и обратный трубопроводы теплосети, горячую воду после поверхностного подогревателя нижней ступени направляют в конденсатор теплонасосной установки через охладитель конденсата.

Изобретение относится к теплотехнике и может быть использовано в системах отопления и кондиционирования. Устройство (1) для измерения тепловой энергии, излучаемой радиаторами, конвекторами или подобными устройствами, в частности для пропорционального распределения стоимости отопления и/или кондиционирования, содержащее радиатор (2), соединенный, через подающий патрубок (3) и возвратный патрубок (4), соответственно с трубой (5) для подачи горячей воды, подаваемой котлом (7) к радиатору (2), и с трубой (6) для возврата воды на выходе из радиатора (2) к указанному бойлеру (7).

Изобретение относится к области теплоэнергетики и может быть использовано в системах теплоснабжения. Способ работы открытой системы теплоснабжения, по которому сетевую воду готовят на ТЭЦ и по подающему трубопроводу теплосети через тепловой пункт направляют в трубопроводы систем отопления и горячего водоснабжения потребителей, температуру сетевой воды в подающем трубопроводе теплосети регулируют на ТЭЦ в зависимости от температуры наружного воздуха по графику центрального качественного регулирования без нижнего излома температурного графика, вернувшуюся от потребителей сетевую воду по обратному трубопроводу теплосети направляют на ТЭЦ, для обеспечения требуемой температуры воды, идущей на горячее водоснабжение, осуществляют смешение сетевой воды, для чего часть сетевой воды из подающего и обратного трубопроводов теплосети направляют в смеситель, догрев идущей на горячее водоснабжение сетевой воды до требуемой температуры осуществляют в теплонасосной установке, отличающийся тем, что испаритель теплового насоса включают по греющей среде в подающий и обратный трубопроводы теплосети, часть сетевой воды из обратного трубопровода теплосети направляют в смеситель через охладитель конденсата.

Изобретение относится к технике теплоснабжения, а именно к централизованному теплоснабжению жилых и промышленных зданий. Абонентский ввод системы теплоснабжения здания, содержащий подающий и обратный трубопроводы, элеватор, задвижки, расположенные до и после элеватора и нагревательные приборы, характеризуется тем, что на внутренней поверхности расширяющейся части элеватора выполнены криволинейные канавки, продольно расположенные от входа в расширяющуюся часть элеватора до его выхода, кроме того, на его выходе выполнена круговая канавка, соединенная как с криволинейными канавками, так и c устройством удаления загрязнений.

Изобретение относится к области теплофикации и может быть использовано при постройке, ремонте и в процессе технической эксплуатации систем теплоснабжения. Многоцелевой тепловой пункт характеризуется тем, что расширительный бак выполнен герметизируемым и при этом вентилируемым, а также проточным; теплообменный аппарат установлен в сливной участок до расширительного бака, прямой ввод связан перекрываемым дважды байпасным трубопроводом с напорным участком, а обратный ввод дополнительно соединен со сливным участком, перекрываемым байпасным трактом; перекрываемый всасывающий патрубок сообщен с: расширительным баком, проточная внутренняя полость которого служит гидравлическим продолжением сливного участка, байпасным трубопроводом в промежутке между обоими точками перекрытия трубопровода, байпасным трактом в промежутке между точкой его перекрытия и сливным участком с помощью коммуникаций, врезанной одним концом между точкой перекрытия всасывающего патрубка и насосом, а вторым концом связанной со сливным участком в промежутке между точкой его перекрытия и баком; напорный патрубок соединен с: напорным участком, сливным участком, байпасным трактом в промежутке между точкой его перекрытия и обратным вводом; всасывание подпиточного средства дополнительно подключено перекрываемым ответвлением от подпиточной линии к емкости, содержащей растворы препаратов, используемых при техническом обслуживании системы теплоснабжения.

Изобретение относится к теплоэнергетике, где может быть использовано в системах теплоснабжения в качестве источника теплоты повышенной энергетической эффективности. Теплогенерирующая установка, включающая водогрейный котел, вход и выход которого подключены соответственно к обратному и подающему трубопроводам тепловой сети, трубопровод рециркуляции с рециркуляционным насосом и регулятором рециркуляции, соединяющий выход и вход водогрейного котла, трубопровод смешения с регулятором температуры сетевой воды, соединяющий выход сетевого насоса, установленного в обратном трубопроводе тепловой сети, с подающим трубопроводом тепловой сети, дополнительно содержит обратный клапан, два гидравлических аккумулятора и ударный узел, причем обратный клапан установлен в трубопровод рециркуляции на входе рециркуляционного насоса, первый гидравлический аккумулятор подключен к трубопроводу рециркуляции между рециркуляционным насосом и обратным клапаном, второй гидравлический аккумулятор соединен с обратным трубопроводом тепловой сети на выходе сетевого насоса, а выход водогрейного котла подключен к подающему трубопроводу тепловой сети через ударный узел. Это позволяет интенсифицировать теплопередачу за счет более эффективного съема теплоты с поверхностей нагрева водогрейного котла и увеличить надежность работы теплогенерирующей установки путем создания условий для самоочищения поверхностей нагрева водогрейного котла и вывода в резерв рециркуляционного насоса, а также повысить энергетическую эффективность теплогенерирующей установки за счет относительного понижения удельного расхода топливно-энергетических ресурсов, достигаемого путем интенсификации теплопередачи и исключения затрат на привод рециркуляционного насоса, кроме того, сократить эксплуатационные расходы теплогенерирующей установки, связанные промывкой водогрейного котла. 1 ил.

Тепловой пункт имеет строительные конструкции, образующие помещение со средствами управления централизованным теплоснабжением территориально удаленных потребителей и индивидуальным теплоснабжением потребителей в образованных заодно с этим тепловым пунктом дополнительных помещениях. Тепловой пункт содержит подающий и обратный трубопроводы, подключенные к магистралям территориальной теплосети, первый и второй пластинчатые теплообменники первой и второй ступеней, соответственно, горячего водоснабжения, и параллельно соединенные между собой входными и выходными патрубками третий и четвертый пластинчатые теплообменники отопления. В трубопроводах предусмотрены первый и второй, и третий, соответственно, насосные блоки. Узел учета тепловой энергии включает первый, второй, третий расходомеры с термометрами сопротивления и тепловычислитель обработки показаний расходомеров и термометров. Узел учета тепловой энергии включает шестой и седьмой расходомеры с термометрами сопротивления и тепловычислитель обработки показаний расходомеров и термометров. На трубопроводе последовательно установлены кран, фильтр-грязевик грубой очистки, фильтр тонкой очистки, первый расходомер узла, а на обратном трубопроводе установлены фильтр, кран и второй расходомер узла, третий расходомер которого включен в подпиточный трубопровод. На выходе первого из расходомеров узла учета тепловой энергии установлен регулятор перепада давления прямого действия, регулируемый по перепаду давления в подающем и обратном трубопроводах. На подающем трубопроводе перед входным патрубком первичного теплоносителя второго теплообменника установлен первый клапан регулирующий, а перед связанными между собой входными патрубками первичного теплоносителя третьего и четвертого теплообменников - второй клапан регулирующий. Технический результат заключается в сокращении потерь тепла, повышении надежности и степени автоматизации, уменьшении габаритов оборудования. Тем самым заявляемое техническое решение позволяет объединить в одной строительной конструкции функции совместного автоматизированного контроля, управления и функционирования центрального и индивидуального теплового пункта. 6 з.п. ф-лы, 1 ил.
Наверх