Способ определения модуля упругости юнга материала микро- и наночастиц

Изобретение относится к способам определения механических свойств материалов путем вдавливания индентора в поверхность образца с заданной нагрузкой, а именно к способам определения статического модуля упругости Юнга (ниже модуль упругости). Сущность: совместно используют экспериментальное вдавливание индентора и компьютерное моделирование вдавливания индентора методом конечных элементов, определяют модуль упругости частицы, соответствующей нулевой разнице расчетной и экспериментальной глубин проникновения индентора, определяют модуль упругости этой же частицы по методике Оливера-Фарра. Сравнивают значение модуля упругости, полученное расчетом по методике Оливера-Фарра со значением, полученным из этапа численных исследований, определяют среднее арифметическое значение модуля упругости исследуемой частицы. Технический результат: возможность определения модуля упругости материала микро- и наночастиц произвольной формы. 2 ил.

 

Изобретение относится к способам определения механических свойств материалов, путем вдавливания индентора в поверхность образца с заданной нагрузкой, а именно к способам определения статического модуля упругости Юнга (ниже модуль упругости).

Известен способ определения модуля упругости [Oliver W., Pharr G. An Improved Technique for Detemining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments // J. Mater. Res. 1992. №7(6). P. 1564-1583], основанный на непрерывной регистрации параметров процесса вдавливания жесткого наконечника правильной формы (пирамидального индентора), глубины его погружения в материал и скорости нагружения (методика Оливера - Фарра). Определяют податливость контакта по касательной кривой разгрузки в точке приложения максимальной силы и площадь контакта индентора с образцом. Рассчитывают приведенный модуль упругости, после чего определяют модуль упругости исследуемого образца материала, исходя из известных значений модуля упругости и коэффициента Пуассона алмазного индентора.

Недостатками указанного способа определения модуля упругости являются: индентор должен вдавливаться только в ровную, не наклонную поверхность; очень высокие, почти недостижимые требования к шероховатости поверхности при малых глубинах проникновения индентора в поверхность.

Наиболее близким к заявляемому техническому решению, принятому за прототип [Способ определения модуля упругости Юнга материала микро- и наночастиц, пат. 2494038 Рос. Федерация, Вахрушев А.В., Шушков А.А. Зыков C.H., заявитель и патентообладатель Ижевск, ин-т механики. - №2012110560/28; заявл. 20.03.2012; опубл. 27.09.2013, Бюл. №27. 6 с.: ил. 4], является способ, основанный на комбинированном использовании натурного эксперимента и численного компьютерного исследования методом конечных элементов. Способ определения модуля упругости состоит из двух этапов (этапа стендовых испытаний, этапа численных исследований и анализа их результатов). На этапе стендовых испытаний происходит: сканирование и оцифровка поверхности частицы; взаимное позиционирование частицы и индентора; экспериментальное вдавливание наконечника индентора в частицу с определением глубины вдавливания. На этапе численных исследований и анализа их результатов происходит: генерация электронной геометрической модели частицы и поверхности наконечника индентора; формирование конечно-элементной модели контактной задачи вдавливания индентора; серия численных экспериментов методом конечных элементов по расчету глубины вдавливания при варьировании модуля упругости и известных значениях формы и упругих констант индентора, силы вдавливания, геометрии поверхности, коэффициента поперечной деформации материала частицы; строится экспериментальная кривая зависимости величины модуля упругости и величины отклонения глубины деформации конечно-элементной модели частицы от экспериментальной величины глубины внедрения индентора; путем интерполяционных процедур вычисляется значение модуля упругости, соответствующее нулевому отклонению экспериментальной и расчетной глубины деформации частицы.

Недостатком указанного способа определения модуля упругости является: несогласованность с экспериментальной методикой Оливера - Фарра.

Задача изобретения - устранение указанных недостатков, а именно разработка способа определения модуля упругости материала микро- и наночастиц произвольной формы, основанного на согласовании экспериментальных методик определения модуля упругости и на комбинированном использовании натурного эксперимента и численного компьютерного исследования методом конечных элементов.

Задача решается тем, что в известном способе, принятом за прототип, определяют модуль упругости материала микро- и наночастицы, определяют модуль упругости способом индентирования по методике Оливера - Фарра этой же частицы, определяют среднее значение модулей упругости, полученных двумя способами.

Решение данной задачи разбивается на три этапа: этап экспериментальных исследований с определением модуля упругости по методике Оливера-Фарра; этап численных исследований в соответствии с полученными экспериментальными данными и анализа их результатов; этап вычисления модуля упругости на основе сравнения значений, полученных на основе экспериментального и численного способов определения модуля упругости.

Этап экспериментальных исследований состоит в следующем: аналогично, как и в решении, принятом за прототип, в этапе стендовых испытаний осуществляется индентирование в частицу с силой, воздействие которой заведомо не приводит к превышению порога перехода упругой деформации в пластическую деформацию, фиксируются соответствующие значения нагрузки F и глубины вдавливания наконечника индентора в частицу hэксп. Определяют модуль упругости по методике Оливера-Фарра EМОФ.

Этап численных исследований и анализа их результатов заключается в следующем: аналогично, как и в соответствующем этапе решения, принятого за прототип, методом конечных элементов (МКЭ) проводится численное решение контактной задачи вдавливания наконечника индентора в частицу с определением глубины вдавливания hМКЭ; строится кривая зависимости Ε(Δh), где Δh=hМКЭ-hэксп; на основании полученной зависимости Ε(Δh) с помощью аппроксимации при Δh=0 находим значение модуля упругости FМКЭ.

Этап вычисления модуля упругости основан на сравнении значения модуля упругости, полученного экспериментальным методом индентирования, с использованием методики Оливера-Фарра ЕМОФ со значением, полученным из этапа численных исследований методом конечных элементов ЕМКЭ, при одинаковом значении нагрузки F. Определяется среднее арифметическое значение модуля упругости исследуемой частицы Ечастицы=(ЕМОФМКЭ)/2.

Таким образом, определяем модуль упругости образца материала микро- и наночастиц.

На фиг. 1 представлена электронная конечно-элементная модель (2) исследуемой поверхности с микро- и наночастицами, созданная на основе результатов процедур сканирования системой NanoTest 600 (1), участок 25 на 25 мкм, до проведения испытания индентированием в исследуемую точку силой F.

На фиг. 2 представлена зависимость Ε(Δh), для нагрузки индентирования 1 мН. Модуль упругости частицы ЕМКЭ определяют при Δh=0.

Заявленный в качестве изобретения способ реализовывался с использованием комплексной системы измерения физико-механических характеристик Nanotest 600 [http://www.micromaterials.co.uk] следующим образом: аналогично, как и в решении, принятом за прототип, определен модуль упругости частицы ЕМКЭ=5.1*1010 Па, при нагрузке индентирования F=1 мН. Отличием от решения принятого за прототип является то, что определяют модуль упругости частицы по методике Оливера-Фарра ЕМОФ=5.4*1010 Па, при значении нагрузки F=1 мН; вычисляют модуль упругости исследуемой частицы по формуле:

Благодаря предложенному способу стало возможным определять модуль упругости материала микро- и наночастиц любой геометрической формы.

Способ определения модуля упругости Юнга материала микро- и наночастиц путем совместного использования экспериментального вдавливания индентора и компьютерного моделирования вдавливания индентора методом конечных элементов, определения модуля упругости частицы, соответствующей нулевой разнице расчетной и экспериментальной глубин проникновения индентора, определения модуля упругости этой же частицы по методике Оливера-Фарра, отличающийся тем, что сравнивают значение модуля упругости, полученное расчетом по методике Оливера-Фарра со значением, полученным из этапа численных исследований, определяют среднее арифметическое значение исследуемой частицы.



 

Похожие патенты:

Изобретение относится к области определения остаточного напряжения путем инструментального индентирования. Сущность: осуществляют приложение к образцу одноосного напряжения, двуосного напряжения и одинакового по всем направлениям напряжения, а затем выполнение инструментального индентирования с использованием индентора, вычисление наибольшей глубины вдавливания индентора в ненапряженном состоянии образца путем подстановки в формулу для вычисления максимальной глубины вдавливания индентора в ненапряженном состоянии фактической глубины контакта в ненапряженном состоянии, полученной из фактической глубины контакта индентора, и максимальной глубины вдавливания индентора и результирующей глубины отпечатка индентора при приложении максимального вдавливающего усилия L0, найденных из зависимости глубины вдавливания индентора от вдавливающего усилия, полученной путем инструментального индентирования, получение кривой зависимости глубины вдавливания индентора от вдавливающего усилия в ненапряженном состоянии путем подстановки вычисленной указанным образом максимальной глубины вдавливания индентора в ненапряженном состоянии образца в формулу, связывающую глубину вдавливания индентора и вдавливающее усилие, и вычисления разности ΔL усилий между усилием L1, соответствующим максимальной глубине вдавливания индентора на кривой зависимости глубины вдавливания индентора от вдавливающего усилия в ненапряженном состоянии, и максимальным вдавливающим усилием L0, и вычисление остаточного напряжения в образце путем подстановки вычисленной разности ΔL усилий в формулу для вычисления остаточного напряжения.

Изобретение относится к измерительной технике и может использоваться в сельском хозяйстве для исследования физико-механических свойств почвы, в частности твердости почвы.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ определения микротвердости нанокомпозитного покрытия с повышенной износостойкостью по соотношению в нем металлической и керамической фаз характеризуется тем, что определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом с изменением при этом процентного соотношения фаз металл-керамика в покрытии от нуля до максимума.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ получения нанокомпозитных покрытий металл-керамика с требуемым значением микротвердости включает обеспечение в получаемом покрытии необходимого процентного соотношения металлической и керамической фаз при определенном химическом составе упомянутых фаз, при этом определяют значение микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом с изменением при этом процентного соотношения фаз металл-керамика в покрытии от нуля до максимума.

Изобретение относится к материаловедению и может быть использовано в различных областях современной электроники, альтернативной энергетике и машиностроении. Способ получения износостойкого нанокомпозитного покрытия с заданным значением микротвердости на поверхности полированной ситалловой пластины ионно-лучевым распылением включает обеспечение в получаемом покрытии необходимого процентного соотношения металлической и керамической фаз при определенном химическом составе упомянутых фаз, при этом определяют значения микротвердости для металлического и керамического покрытий различного химического состава без примесей керамической или металлической фазы соответственно, затем получают покрытие с заданным химическим составом и заданным процентным соотношением указанных фаз с определенным шагом и с изменением процентного соотношения фаз металл-керамика в покрытии от нуля до максимума, после чего определяют значения микротвердости полученного покрытия при заданном соотношении указанных фаз.

Изобретение относится к устройствам для исследования и анализа свойств материалов путем определения величины сопротивления их просверливанию и может быть использовано для определения физико-механических характеристик древесины растущих деревьев, пиломатериалов, деревянных строительных конструкций различного назначения.

Изобретение относится к исследованию материалов путем определения их химических или физических свойств, в частности к исследованию прочностных свойств твердых материалов путем приложения к ним механических усилий, а именно путем измерения высоты отскакивания ударного тела.

Изобретение относится к области физики и может быть использовано для исследования и/или анализа материалов путем определения их физических или химических свойств.

Изобретение относится к определению механических характеристик однородных покрытий, а именно к определению модуля упругости покрытий посредством вдавливания в поверхность материала цилиндрического индентора, и может быть использовано для определения модуля упругости покрытий на подложках из различных материалов.

Изобретение относится к технике контроля и исследования материалов и изделий и может быть использовано для определения параметров рельефа поверхности (линейные размеры, шероховатость), механических (твердость, модуль упругости) и трибологических (коэффициент трения, износостойкость, время жизни покрытий) характеристик материалов с субмикронным и нанометровым пространственным разрешением.

Изобретение относится к фармацевтической промышленности, а именно к композиции для визуализации и повреждения опухолевых клеток-мишеней, содержащей неорганические наночастицы размером 10-100 нм и размерной дисперсностью до 6% состава NaYF4, солегированные ионами иттербия (Yb) и эрбия (Er) или иттербия (Yb) и тулия (Tm), и включающей цитотоксический компонент, представленный бета-изотопом, которым является изотоп иттрия-90 (90Y), при этом наночастицы переведены в гидрофильную форму путем использования покрытия, представленного по крайней мере одним из соединений, выбранных из полималеинового ангидрида октадецена, полиэтиленимина, поли(D,L-лактида), поли(лактид-гликолида), диоксида кремния, тетраметиламмония гидроксида, при этом наночастицы связаны с гуманизированным мини-антителом scFv 4D5 или высокоаффинным пептидом неиммуноглобулиновой природы DARPin-29, которые специфичны к раковоассоциированному антигену HER-2/new.

Изобретение относится к способу получения медьсодержащих нанокатализаторов с развитой поверхностью, который заключается в том, что сначала из раствора электролита на металлический носитель методом электроосаждения наносят медь, затем носитель с нанесенным активным металлом подвергают термообработке.

Изобретение относится к нанотехнологиям и может быть использовано для оценки количества гидроксильных групп на внутренней поверхности стеклянных фотонно-кристаллических волноводов с полой сердцевиной (ФКВ с ПС), в том числе с селективно запаянными внешними оболочками, используемых для изготовления конструктивных элементов сенсоров, при химической модификации их внутренней поверхности.

Настоящее изобретение относится к нанотехнологиям и может быть использовано для получения стабильных водных растворов полупроводниковых квантовых точек, покрытых оболочками оксида кремния, модифицированных активной группой для биоконъюгирования и стабилизированных полиоксиэтиленом.
Изобретение относится к нанотехнологиям. Сначала получают раствор квантовых точек на основе селенида кадмия в хлороформе с их концентрацией 4⋅10-8 М и смешивают его с раствором дендримера в метаноле так, чтобы мольное соотношение квантовых точек к дендримеру составляло от 1:700 до 1:1100.

Изобретение относится к области нанотехнологий. Для получения наночастиц серебра смешивают фруктозо-глюкозный сироп из клубней топинамбура с раствором нитрата серебра.

Изобретение относится к дисперсиям проводящих нанонаполнителей в полимерных матрицах, к композитам, полученным из указанных дисперсий, и к способам их получения. Способ получения композиции включает смешивание или диспергирование первой композиции, содержащей один или более проводящих нанонаполнителей и один или более полиарилэфирсульфоновых термопластичных полимеров (A), с или в одном или более предшественниках (P) неотвержденной термореактивной смолы и необязательно одном или более отверждающих агентах для указанной смолы.

Изобретение может быть использовано в электронной и химической промышленности, медицине и оптике. Сначала получают полиакрилонитрил гомополимеризацией нитрила акриловой кислоты или его сополимеризацией с винильными сомономерами с долей сомономеров не более 20% в сополимере.

Настоящее изобретение касается пастообразного состава, содержащего проводящие углеродные наполнители, способа получения ее, а также применения ее для получения тонких проводящих пленок, красок или покрытий, в частности для изготовления Li-ионных батарей или суперконденсаторов, или для получения проводящих композиционных материалов.

Изобретение относится к способу получения металлоорганических каркасных соединений с октакарбоксифталоцианинатом металла в качестве основной структурной единицы.
Изобретение относится к нанотехнологиям и наноструктурам, а именно к методам получения слоя рутила в виде пленки или пластинки. Способ получения включает процесс, происходящий в окислительной газовой среде, причем поверхность титана разогревают с помощью резистивного, индукционного или лучевого воздействия до температуры ниже температуры плавления вблизи точки фазового перехода 800-900°С в окислительной газовой среде, содержащей кислород и инертный газ или смесь инертных газов, при давлении, превышающем 100 Па, при этом происходит окисление приповерхностных слоев титана с одновременной перестройкой в структуру, соответствующую ТiO2 - рутилу. Технический результат заключается в устранении технических трудностей получения рутила, упрощении технологии извлечения конечного продукта, а также в устранении загрязнения конечного продукта. 4 пр.
Наверх