Способ получения высокопористого ячеистого материала

Изобретение относится к получению высокопористого ячеистого материала. Способ включает приготовление суспензии из смеси порошков и раствора органического вещества, нанесение суспензии на пористый полимерный материал, сушку полученной заготовки, удаление из нее нагреванием органических веществ с последующим спеканием. Смесь порошков готовят из высокочистого железа, легированного хромом в количестве от 5 до 20 мас.% и измельченного до среднего размера частиц 2-5 мкм, и ультрадисперсного порошка кобальта в количестве 1,2-2,0 мас.%. Обеспечивается упрощение процесса получения высокопористого ячеистого материала, обладающего необходимой прочностью для транспортировки. 1 пр.

 

Изобретение относится к области порошковой металлургии, в частности к способам упрочнения заготовок, предназначенных для изготовления высокопористого проницаемого ячеистого материала (ВПЯМ) на основе жаростойкого сплава, используемого в условиях высоких температур и агрессивных сред в качестве фильтра, носителя катализаторов, шумопоглотителя, теплообменника, конструкционного материала. Может найти применение в энергетике, машиностроительной, химической и других отраслях промышленности.

Изобретение касается шликерной (суспензионной) технологии получения металлических высокопористых проницаемых ячеистых материалов, в частности ее разновидности - метода дублирования полимерной матрицы.

Известен способ получения открытоячеистого пеноматериала на основе железо-хром-алюминий-иттриевого (FeCrAlY) сплава (производитель Porvair Fuel Cell Technology, Inc. / Hendersonville, N.C.), применяемого в качестве материала излучающей горелки (Патент US 2008227044, МПК F23D 14/16, опубл. 18.09.2008 г.) и в качестве фильтра и носителя катализатора в выхлопном устройстве дизельных двигателей (Патент US 7673448, МПК B01D 50/00, опубл. 09.03.2010 г.). Согласно патенту US 2008227044 открытоячеистый пеноматериал на основе FeCrAlY-сплава получают следующим образом: пенополиуретан, пропитанный и насыщенный прекурсорами металлической пены, удаляют при нагревании. Далее металлические частицы получаемого FeCrAlY-сплава связывают вместе в процессе спекания. На практике пенополиуретан покрывают металлической композицией, содержащей растворитель, позволяющий транспортировать металлические частицы в объем полимерной пены, поверхностно-активные вещества, спекающие и связующие добавки и другие вспомогательные компоненты, обеспечивающие смачиваемость пенополимера. После того как пенополиуретан насыщен необходимым количеством металлической композиции (композиция должна покрывать все внутренние перемычки полимера), имеющиеся в композиции летучие органические компоненты удаляют и металлические частицы сплавляют вместе при спекании, получая металлический открытоячеистый пеноматериал, являющийся репликой полимерной пены. Более подробные детали производства указанного открытоячеистого пеноматериала являются ноу-хау фирмы Porvair Fuel Cell Technology, Inc. (Hendersonville, N.C.). Полученный открытоячеистый пеноматериал, содержит, мас.%: Fe - 70, Cr - 25, Al - 5, Y ~ 1, включает от 1 до 150 пор на дюйм, обладает плотностью 2-25% от теоретической плотности, выдерживает нагрев в окислительной среде до 900 С.

Известен способ получения высокопористого хромаля, приведенный в примере 4 патента RU 2300444 (МПК B22F 3/11, C22C 1/08, опубл. 10.06.2007 г.). Указанный способ включает следующие стадии: приготовление суспензии из смеси порошков, состав и процентное содержание которой соответствуют получаемым сплавам, и водного раствора клеящего органического вещества - поливинилового спирта; нанесение суспензии на пористый полимерный материал, например пенополиуретан; удаление нагреванием органических веществ в восстановительной атмосфере со скоростью нагрева 100-200 град./ч при температуре 150-700°C с получением заготовки; спекание заготовки с выдержкой в течение 2 ч при температуре 1250°C. Согласно патенту RU 2300444 при получении высокопористого хромаля с целью предотвращения выплавления легкоплавкого алюминия его вводят в смесь порошков в составе твердого раствора, содержащего 50 мас.% алюминия и 50 мас.% железа (ферроалюминий Fe50A150). Содержание ПВС в водном растворе, используемом для приготовления суспензии, составляет 7 мас.%, соотношение масс смеси порошков и водного раствора ПВС в суспензии - 100/20. В результате осуществления способа получают ВПЯМ на основе хромаля следующего состава: мас.%: Fe - 72, Cr - 23, Al - 5. Полученный материал имеет плотность 4,4 г/см3 и пористость 94,5%.

Недостатком указанного способа является низкая прочность заготовки ВПЯМ на основе хромаля на стадии начальной термообработки.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ получения ВПЯМ (пат. РФ №2497631 МПК B22F 3/11, опубл. 31.07.2012 г.), включающий приготовление суспензии из смеси порошков и раствора органического вещества, нанесение суспензии на пористый полимерный материал, удаление нагреванием органических веществ из заготовки и последующее ее спекание. В качестве исходного порошка используют высоколегированный сплав, например Х60Ю20, который предварительно измельчают до среднего размера частиц 0,6-1,4 мкм, затем смешивают в смесителе с порошками железа в количестве 30 масс. % и дополнительно введенных добавок ультрадисперсного кобальта в количестве 1,5-2,0 мас.%, наноразмерного никеля в количестве 0,5-0,6 мас.% в виде прекурсора в течение 24-32 часов с получением смеси порошков с относительной плотностью укладки 0,5-0,6, а удаление органических веществ проводят с выдержками при Т=270-280°C продолжительностью не менее 2-х часов и проводят спекание не менее 2-х часов при Т=1280°C, нагрев не менее 32 часов и охлаждение не менее 24 часов соответственно.

Указанный способ - ближайший аналог предлагаемого изобретения.

Недостатками способа-прототипа является сложность процесса, использование дорогостоящих компонентов.

Задачей создания изобретения является устранение недостатков прототипа, а именно упрощение и удешевление процесса получения ВПЯМ.

Поставленная задача решается с помощью признаков, указанных в формуле изобретения, общих с прототипом, таких как способ получения высокопористого ячеистого материала, включающий приготовление суспензии из смеси порошков и раствора органического вещества, нанесение суспензии на пористый полимерный материал, удаление нагреванием органических веществ из заготовки с последующим ее спеканием, и отличительных существенных признаков, таких как - в качестве исходного порошка используют высокочистое железо, легированное хромом с содержанием от 5 до 20 мас.%, которое подвергают измельчению до среднего размера частиц 2-5 мкм, затем добавляют ультрадисперсный порошок кобальта в количестве 1,2-2,0 мас.%, с последующим шликерованием и сушкой образцов известными методами и их спеканием.

Вышеперечисленная совокупность существенных признаков позволяет получить следующий технический результат - упрощение и удешевление процесса получения ВПЯМ.

Неочевидное для специалиста использование в процессе высокочистого железа, легированного хромом с содержанием до 20 мас.%, измельченного до среднего размера частиц 2-5 мкм, позволяет получить ВПЯМ простым, удобным и недорогим способом.

При наличии хрома в высокочистом железе менее 5 мас.% снижаются значения жаропрочности и жаростойкости, если более 20 мас.%, то резко увеличивается стоимость исходного сырья при изготовлении ВПЯМ. Высокочистое железо, измельченное до среднего значения частиц 2 мкм, выбрано опытным путем, а измельченное до размера частиц более 5 мкм не удовлетворяет условиям спекания.

Добавка 1,5-2,0 мас.% порошка ультрадисперсного кобальта, полученного химическим восстановлением и имеющего средний размер частиц 0,4 мкм (определен с помощью оптического микроскопа), имеет двойное назначение: повышает жаропрочность получаемого ВПЯМ и прочность заготовки на стадии начальной термообработки. Применение менее 1,5 мас.% порошка ультрадисперсного кобальта не оказывает влияния на прочность заготовки, а более 2,0 мас.% - экономически нецелесообразно. Введение 2,0 мас.% порошка ультрадисперсного кобальта на стадии смешивания предварительно измельченного высокочистого железа, легированного хромом, приводит к увеличению предела прочности на сжатие заготовки до 130 КПа, что обеспечивает необходимую прочность заготовки при транспортировке.

Таким образом, неочевидное использование высокочистого железа, легированного хромом, исключение ряда исходных веществ, операций и режимов из процесса прототипа позволяет получить ВПЯМ простым, удобным и недорогим способом.

Изобретение иллюстрируется нижеприведенным примером.

Пример

В качестве исходного материала порошка используют высокочистое железо, легированное хромом с содержанием 12,5 мас.%, и ультрадисперсный порошок кобальта. Шихта изготавливается в вибромельнице MB - 0,005. В результате размола получаем шихту с процентным содержанием: высокочистое железо - 98,5% и ультрадисперсный порошок кобальта - 1,5%. Средний размер частиц шихты получаем от 2 до 5 мкм.

На следующем этапе проводим шликерование пластин ППУ (пенополиуретан). Пластины ППУ пропитываем шликером - шихта и поливиниловый спирт 7% в водном растворе. Для равномерного распределения шликера в пластине ППУ пропускают их через валки. Далее высушивают их при комнатной температуре в течение 24 часов.

Для удаления органических веществ образцы подвергают температурной обработке - время выдержки при Т=720-730°C не менее 1 часа.

Затем образцы спекают с выдержкой не менее 2 часов и Т=1270°C. Нагрев не менее 32 часов и охлаждение не менее 24 часов соответственно.

Способ получения высокопористого ячеистого материала, включающий приготовление суспензии из смеси порошков и раствора органического вещества, нанесение суспензии на пористый полимерный материал, сушку полученной заготовки, удаление из нее нагреванием органических веществ с последующим спеканием, отличающийся тем, что смесь порошков готовят из высокочистого железа, легированного хромом в количестве от 5 до 20 мас.% и измельченного до среднего размера частиц 2-5 мкм, и ультрадисперсного порошка кобальта в количестве 1,2-2,0 мас.%.



 

Похожие патенты:

Группа изобретений относится к композитному материалу для землебурильного долота. Способ изготовления композитного материала включает смешивание первой составляющей твердой фазы в виде карбида со связующим веществом, второй составляющей твердой фазы в виде пористого карбида, имеющего пористость по меньшей мере 1% и содержащего от 0,1 мас.

Изобретение относится к области металлургии и может быть использовано при получении литых доэвтектических, эвтектических и заэвтектических алюминиево-кремниевых сплавов (силуминов).

Изобретение может быть использовано в составе порошковых проволок, покрытых электродов и флюсов для сварки и наплавки. Модификатор содержит нанопорошок тугоплавкого соединения, выбранного из группы, включающей карбид, нитрид, оксид, карбонитрид, оксикарбонитрид металла, в качестве инокулятора и протектор.

Изобретение относится к области специальной металлургии, в частности к получению литых шихтовых заготовок электродов из высоколегированных сплавов на основе алюминидов никеля, и может быть использовано для центробежной атомизации материала электродов и получения гранул для применения в аддитивных 3D-технологиях с целью получения сложнопрофильных изделий из жаропрочных металлических материалов.

Изобретение относится к области металлургии и может быть использовано для получения композиционных литых материалов для деталей транспортных средств, машин и оборудования.

Изобретение относится к порошковой металлургии с использованием технологии быстрой кристаллизации, в частности к получению заготовок из алюминиевых сплавов. Предложенный способ включает приготовление алюминиевого расплава, центробежное литье гранул, их охлаждение и последующую ступенчатую вакуумную дегазацию в герметичных технологических капсулах, затем ведут компактирование гранул в герметичных технологических капсулах без дополнительного нагрева в контейнере пресса, нагретом до температуры не менее 400°C, и механическую обточку скомпактированных брикетов с получением компактных заготовок.

Изобретение относится к области металлургии цветных металлов, в частности к получению сплава алюминия с редкоземельными металлами, и может быть использовано для получения алюминиевого сплава с 0,2-0,4 мас.

Изобретение относится к области металлургии, в частности к технологии приготовления модифицирующих лигатур алюминий-титан, которые применяются при приготовлении алюминиевых сплавов для измельчения структуры отливаемых из них изделий.

Группа изобретений относится к горному делу и может быть применена для разрушаемого скважинного инструмента. Разрушающаяся трубная заанкеривающая система содержит элемент в форме конической призмы; втулку по меньшей мере с одной первой поверхностью, радиально изменяющейся в ответ на продольное перемещение элемента в форме конической призмы относительно втулки, причем первая поверхность может взаимодействовать со стенкой конструкции; уплотнение по меньшей мере с одной второй радиально изменяющейся поверхностью и гнездо, имеющее контактную площадку, взаимодействующую с уплотнением со съемной пробкой, спускаемой на нее враспор.

Группа изобретений относится к горному делу и может быть применена для разрушаемого скважинного инструмента. Элемент в форме конической призмы включает в себя металлический композит, который имеет сотовую наноматрицу, содержащую материал наноматрицы с металлическими свойствами; металлическую матрицу, размещенную в сотовой наноматрице; и первый участок в форме конической призмы.

Изобретение относится к системам и устройствам для получения продуктов из распыленных металлов и сплавов. Получают поток жидкого сплава и/или ряд капель жидкого сплава.

Изобретения относятся к технологической оснастке, предназначенной для формования изделий из целлюлозы. Устройство для формования содержит пресс-форму и опорную пластину с полостью и плоскими опорными поверхностями.

Изобретение относится к изготовлению сплавов на основе никелида титана, применяемых для медицинских имплантатов. Способ изготовления литых изделий включает переплав металлического полуфабриката индукционной центробежной плавкой в карборундовом тигле.
Изобретение относится к получению гранул пенометаллов. Способ включает смешивание порошка металла с порофором, прессование полученной смеси с получением компактного образца в виде стержня или прутка, диспергирование полученного образца путем пропускания короткого импульса электрического тока с заданными амплитудой и длительностью.
Изобретение относится к технологии изготовления фильтрующего материала, в частности, для фильтрации жидкостей, очистки газовых потоков и других процессов разделения.

Изобретение может быть использовано при получении комбинированных пористо-монолитных имплантатов на основе никелида титана для применения в медицине. Шихта на основе порошка никелида титана содержит активирующую добавку в количестве 10-20 вес.% от общего веса шихты, включающую от 60 до 65 ат.% порошка титана электролитического с размерами частиц в интервале 40-70 мкм и от 40 до 35 ат.% порошка никеля карбонильного с размерами частиц в интервале 10-40 мкм.

Группа изобретений относится к металлическим волокнам жаростойкого сплава, которые могут быть использованы для получения истираемых уплотнений проточной части турбины авиационного газотурбинного двигателя.
Изобретение относится к области порошковой металлургии, в частности к способам получения высокопористых ячеистых материалов (ВПЯМ), предназначенных для использования в качестве фильтров, шумопоглотителей, носителей катализаторов, теплообменных систем, конструкционных материалов, работающих в условиях высоких температур, и может найти применение в энергетике, машиностроительной, химической и других отраслях промышленности.

Изобретение относится к порошковой металлургии, в частности к получению объемно-пористых структур сплавов-накопителей водорода (СНВ), способных выдерживать многократные циклы гидрирования/дегидрирования без разрушения.
Изобретение относится к порошковой металлургии, в частности к получению пористых многослойных проницаемых материалов. Может использоваться в медицине для изготовления функционально-градиентных имплантатов.

Изобретение относится к области порошковой металлургии, преимущественно к получению пористых изделий на основе пеноалюминия, и предназначено для изготовления деталей автомобилей, шумопоглащающих экранов, теплостойких демпфирующих материалов. Способ получения прекурсора для изготовления плакированного пеноалюминия включает изготовление из металлического листа контейнера, загрузку в контейнер порошка алюминиевого сплава с порофором, после заполнения которого контейнер сверху закрывают металлическим листом, герметизируют и проводят ступенчатую горячую прокатку, при этом изготавливают контейнер из металлического листа, выполненного из алюминиевого сплава, многоступенчатую горячую прокатку осуществляют при температуре 420°С с суммарным обжатием 80% и промежуточными отжигами между проходами, причем на первом проходе прокатку осуществляют с обжатием 30%, на втором - с обжатием 20%, на третьем - с обжатием 10%, на последующих четырех - с обжатием 5% от исходной толщины контейнера. Изобретение направлено на создание способа получения прекурсора для изготовления плакированного пеноалюминия с использованием прокатки для консолидации листов из алюминиевого сплава с порошком алюминиевого сплава, содержащим порофор. 3 ил., 2 пр.
Наверх