Трубчатая печь с теплообменником

Настоящее изобретение относится к трубчатой печи, которая может быть использована для нагрева нефти, нефтепродуктов и других углеводородных смесей. Печь содержит камеру сгорания с горелкой, сообщенную с камерой теплообмена, в которой размещены продуктовые трубы, и горелка включает газовые стволы и воздуховод. При этом концы газовых стволов размещены в камере сгорания вокруг выходного отверстия воздуховода, в камере сгорания установлен завихритель воздушного потока, продуктовые трубы представляют собой трубчатый теплообменник с поперечно обтекаемым пучком труб, а в коллекторах трубчатого теплообменника установлены перегородки с образованием последовательно-параллельной схемы соединения труб. Предлагаемая печь обладает высокой мощностью и эффективностью. 3 з.п. ф-лы, 4 ил.

 

Изобретение относится к нагревательной технике и может быть использовано в области нефтепереработки и нефтехимии для нагрева нефти, нефтепродуктов и других углеводородных смесей.

Известны трубчатые печи, используемые в нефтеперабатывающей и нефтехимической промышленности, содержащие радиантную и конвективную камеры со змеевиками и установленный в нижней части радиантной камеры горелки (Евтус Н.Р., Шарихин В.В. Трубчатые печи в нефтеперабатывающей и нефтехимической промышленности. М.: Химия, 1987, с. 7-14; RU 2409610 С2, 20.01.2011; RU 2439125 C1, 10.01.2012).

Недостатком этих печей являются большие габариты радиантной камеры с большой радиационной поверхностью для нагрева труб змеевика, расположенных вблизи этой поверхности.

Наиболее близкой к предложенному устройству является трубчатая печь для нагрева нефтепродуктов, содержащая конвективную камеру коробчатой формы с двухрядным продуктовым змеевиком, в основании корпуса печи размещена камера сгорания циклонного типа с подводом воздуха от радиального вентилятора, а в торцевых стенах корпуса печи выполнены газоотводящие каналы (RU 43011 U1, 27.12.2004). Печь имеет несколько уменьшенные габариты (на 15-20% по сравнению с печами, имеющими радиантную камеру) за счет исключения из конструкции радиантной камеры.

В известной печи отсутствуют условия для полного сгорания топлива в камере сгорания, так как не полностью сгоревшие раскаленные дымовые газы (фактически, пламя) касаются холодных труб змеевика, остывают и не сгорают полностью. Это приводит к образованию оксида углерода СО. Несмотря на закрутку воздуха в камере сгорания циклонного типа интенсивного перемешивания с газом достичь не удастся, поскольку пламя выходит в конвективную камеру, и скорости перемешивания низкие из-за больших размеров этой камеры. Трубы змеевика имеют большой диаметр и расположены с большими зазорами, поэтому теплоотдача недостаточно велика.

Кроме того, так как не регулируется скорость движения продукта по змеевику, в более нагруженных трубах возможен процесс коксования на стенке труб.

Задачей изобретения является создание устройства для нагрева жидкостей высокой мощности и эффективности.

Задача решается тем, что трубчатая печь содержит камеру сгорания с горелкой, сообщенную с камерой теплообмена, в которой размещены продуктовые трубы, причем согласно изобретению горелка включает газовые стволы и воздуховод, при этом концы газовых стволов размещены в камере сгорания вокруг выходного отверстия воздуховода, в камере сгорания установлен завихритель воздушного потока, продуктовые трубы представляют собой трубчатый теплообменник с поперечно обтекаемым пучком труб, а в коллекторах трубчатого теплообменника установлены перегородки с образованием последовательно-параллельной схемы соединения труб.

Технический результат, достигаемый предложенным устройством, заключается в повышении полноты сгорания топлива в камере сгорания за счет интенсивного перемешивания газа и выходящего из воздуховода воздуха с помощью завихрителя, что в результате приводит к более интенсивному нагреву жидкости в теплообменнике и к увеличению мощности печи при малых габаритах и массе. Кроме того, использование трубчатого теплообменника с поперечно обтекаемым пучком труб позволяет увеличить число труб, уменьшить зазоры между ними и, в результате, увеличить поверхность теплоотдачи и эффективность теплообмена. При этом за счет последовательно- параллельной схемы прохождения продукта обеспечивается увеличение скорости движения продукта и предотвращение коксования в случае нагрева нефти или нефтепродуктов.

В предпочтительном варианте выполнения камера сгорания и воздуховод имеют цилиндрическую форму, а камера теплообмена в поперечном сечении имеет прямоугольную форму.

При этом оси газовых стволов параллельны оси воздуховода и камеры сгорания.

В частном случае завихритель может представлять собой лопаточный завихритель, обеспечивающий интенсивное перемешивание. При этом концы газовых стволов расположены между лопатками завихрителя.

На фиг. 1 показана предложенная трубчатая печь, осевой разрез.

На фиг. 2 - теплообменник, вид сверху.

На фиг. 3 - теплообменник, вид сбоку.

На фиг. 4 - сечение А-А на фиг. 3.

Трубчатая печь содержит камеру 1 сгорания, с нижней частью которой соединена горелка 2. Камера 1 сгорания сообщена с камерой 3 теплообмена, в которой размещены продуктовые трубы. С камерой 1 сгорания соединен цилиндрический корпус горелки 2, в котором соосно расположен воздуховод 4, и по периферии корпуса вокруг воздуховода 4 размещены газовые стволы 5. Концы газовых стволов 5 расположены в камере 1 сгорания. Торцы газовых стволов 5 и воздуховода 4 с выходными отверстиями обращены в сторону камеры 3 теплообмена. Оси газовых стволов 5 параллельны оси воздуховода 4 и камеры 1 сгорания. Камера 1 сгорания и воздуховод 4 имеют цилиндрическую форму, а камера 3 теплообмена в поперечном сечении имеет прямоугольную форму. На выходе воздуховода 4 установлен завихритель 6 воздушного потока. В приведенном примере выполнения изобретения завихритель 6 может представлять собой лопаточный завихритель, обеспечивающий интенсивное перемешивание. Концы газовых стволов 5 расположены между лопатками завихрителя 6.

Продуктовые трубы представляют собой трубчатый теплообменник 7 с поперечно обтекаемым пучком труб, в коллекторах 8 и 9 которого могут быть установлены перегородки 10 с образованием последовательно-параллельной схемы прохождения теплоносителя.

Камера 1 сгорания представляет собой цилиндр диаметром в зависимости от мощности печи (для 2 МВт - 280 мм, для 70 МВт - 2 м) и высотой от 1 до 2 метров. Теплообмена в камере 1 сгорания нет. Продукты сгорания проходят через камеру 3 теплообмена и, благодаря совмещенному радиационному и конвективному теплообмену, полностью передают тепло трубкам теплообменника 7. КПД печи выбирается в зависимости от количества рядов теплообменника и может быть от 85 до 98%.

Конструкция теплообменника 7 с двумя камерами - коллекторами 8 и 9 позволяет варьировать скоростью теплоносителя, так как благодаря перегородкам 10 в камерах возможна последовательно-параллельная схема соединения. Наибольшая скорость потока при последовательном соединении труб теплообменника 7 и наименьшая скорость при параллельном. Таким образом, выбирая схему соединения и, следовательно, увеличивая скорость движения продукта, можно предотвращать коксование в случае нагрева нефти или нефтепродуктов.

В качестве горелки 2 может применяться модернизированная серийно выпускаемая горелка (можно типа ГКВД). Модернизация заключается в применении завихрителя 6 воздушного потока. Завихритель 6 лопаточный. Угол наклона лопаток составляет 15 градусов к горизонту. Газовые стволы 5 горелки проходят между лопатками завихрителя 6. Воздух к горелке 2 подается от воздуходувки по воздуховоду 4. Давление воздуха перед горелкой 2 - 200-300 мм в. ст.

Теплообменник 7 выполнен из стальных труб с расстоянием между ними от 5 до 12 мм. Камера 1 сгорания поставляется на монтажную площадку в готовом виде и собирается с теплообменником 7. Затем обвязывают печь по газу, продукту, подсоединяют дутьевой воздух к горелке 2 и запускают печь. Мощность печи не ограничена. На печи мощностью от 100 кВт до 70 МВт используется одна горелка.

Поток воздуха проходит через завихритель 6 и интенсивно перемешивается с газом, после чего попадает в камеру 1 сгорания. Чем выше скорость перемешивания, тем выше опережающим темпом скорость горения. Таким образом, в камере 1 происходит полное сгорание топлива без продуктов неполного горения, таких как СО, как при малых, так и при больших нагрузках.

Отношение мощности к массе предложенной печи составляет 2 Гкал на тонну, что в 5-10 раз меньше чем у известных трубчатых печей, имеющих радиантную камеру.

1. Трубчатая печь, содержащая камеру сгорания с горелкой, сообщенную с камерой теплообмена, в которой размещены продуктовые трубы, отличающаяся тем, что горелка включает газовые стволы и воздуховод, при этом концы газовых стволов размещены в камере сгорания вокруг выходного отверстия воздуховода, в камере сгорания установлен завихритель воздушного потока, продуктовые трубы представляют собой трубчатый теплообменник с поперечно обтекаемым пучком труб, а в коллекторах трубчатого теплообменника установлены перегородки с образованием последовательно-параллельной схемы соединения труб.

2. Печь по п. 1, отличающаяся тем, что камера сгорания имеет цилиндрическую форму, а камера теплообмена в поперечном сечении имеет прямоугольную форму.

3. Печь по п. 2, отличающаяся тем, что оси газовых стволов параллельны оси воздуховода и камеры сгорания.

4. Печь по п. 1, отличающаяся тем, что завихритель представляет собой лопаточный завихритель, между лопатками которого расположены концы газовых стволов.



 

Похожие патенты:

Изобретение относится к устройству трубчатой вертикальной печи с змеевиками, дымоходом с рекуперативным теплообменником. Печь трубчатая состоит из вертикально установленного футерованного с защитной обечайкой корпуса печи, дымохода с рекуперативным теплообменником, внутри корпуса печи смонтировано несколько витых или прямоугольных внутренних и наружных змеевиков из труб, расположенных коаксиально и образующих между собой и кольцевой лучеотражательной перегородкой, установленной между змеевиками, каналы для прохода дымовых газов, образующихся при горении топлива от горелки, закрепленной в поду печи, отличающаяся тем, что дымоход с рекуперативным теплообменником, рекуператором трубчатой печи установлен параллельно корпусу печи на отдельном от печи фундаменте на расстоянии от выходного штуцера печи до входного штуцера рекуператора, равном длине корпуса регулируемой заслонки и длине входного штуцера дымососа, и соединен с нижней частью корпуса печи патрубком с диаметром, равным диаметру кожуха рекуператора, а внутри патрубка установлена регулируемая заслонка и датчики контрольно измерительных приборов, а выходной патрубок печи соединен с пространством печи, образованным между наружным змеевиком с минимальными зазорами между трубами и жаропрочной защитной обечайкой, футеровки корпуса печи, а внутренний змеевик снаружи снабжен лучеотражательной обечайкой с бандажами жесткости на концах, закрепленной через стойки и кронштейны к поду и крышке печи, а в верхней части внутреннего змеевика установлен регулируемый пламеотбойник напротив выхлопного клапана на съемной крышке печи, а рекуператор в нижней части межтрубного пространства снабжен входным штуцером от дымососа, а в нижней части его распредкамеры установлены входной и выходной штуцеры с соединительной трубой, последовательно соединенной внизу с наружным конвективным змеевиком, вверху с внутренним радиантным змеевиком и внизу с трубой и выходным штуцером проходящим через отверстие в поде или корпусе печи к потребителям целевого продукта.

Группа изобретений относится к способу упрочнения стальных деталей, устройству для осуществления способа и упрочненным в соответствии с этим способом стальным деталям.

Изобретение может быть использовано в химической промышленности. Способ получения сухих цинковых белил включает испарение цинка в печи испарения при температуре 1200-1350°C и разрежении в системе печь-вытяжной вентилятор 50-100 Па с поверхности расплава цинка 3-5 м2 при толщине слоя расплава цинка 250-350 мм.

Изобретение относится к химии, в частности к нанесению защитных антикоррозионных покрытий, и может быть использовано для нанесения цинкового покрытия методом диффузии на детали, имеющие большие линейные и малые поперечные размеры, например трубы нефтепромыслового сортамента.

Изобретение относится к устройству и способу получения синтезированных предшественников продуктов синтеза при повышенных температурах. .

Изобретение относится к области нефтепереработки и нефтехимии, в частности к трубчатым печам для нагрева нефтяного сырья. .

Изобретение относится к способу и соответствующему устройству для сжигания материалов, содержащих благородные металлы. .

Изобретение относится к конструкции трубчатой печи и может быть использовано в нефтехимической и нефтеперерабатывающей отраслях промышленности для нагрева углеводородных сред.

Изобретение относится к области химико-термической обработки металлических изделий. .

Изобретение относится к средствам производства углеродных материалов, а именно к муфельным электропечам, и может использоваться для графитации углеродсодержащих материалов.

Изобретение относится к крекинговой печи для получения этилена, содержащей: по крайней мере одну радиантную секцию, которая снабжена донной горелкой и/или боковой горелкой и по крайней мере одним набором радиантных змеевиков, размещенным в радиантной секции в продольном направлении.

Изобретение относится к трубчатой печи, включающей коробчатый корпус с камерами конвекции и радиации, в которых размещены конвективный и радиантный змеевики и горелки, установленные в поду печи, причем радиантный змеевик выполнен из вертикальных труб.

Изобретения могут быть использованы в области нефтепереработки. Печь замедленного коксования (10) для нагревания исходного материала до температуры замедленного коксования включает нагреватель, содержащий зону радиационного нагревания (14), в которой расположен содержащий множество параллельных труб нагревательный змеевик (26).

Изобретение относится к печи для этиленового крекинга, имеющей многоходовой радиантный змеевик и включающей по меньшей мере одну радиантную секцию, которая включает установленные в дне горелки и/или установленные в боковых стенках горелки и по меньшей мере один многоходовой радиантный змеевик, расположенный в продольном направлении радиантной секции.

Изобретение относится к области нефтепереработки и нефтехимии, в частности к трубчатым печам для нагрева нефтяного сырья. Изобретение касается трубчатой печи, включающей корпус с футеровкой, камеру радиации с радиантным змеевиком и горелками, камеру конвекции с трубным пучком, состоящим из трубных решеток с расположенным в них конвективным змеевиком, с поворотными фиксируемыми продольными перегородками между трубами конвективного змеевика и футеровкой стенки камеры конвекции, выполненными в виде уголков, боковые полки которых направлены внутрь трубного пучка.

Изобретение относится к нефтепереработке, в частности к трубчатым печам для нагрева нефтяных остатков в процессах висбрекинга, термокрекинга, замедленного коксования.

Изобретение относится к области нефтепереработки и нефтехимии, в частности к трубчатым печам для нагрева нефтяного сырья. Изобретение касается печного агрегата, включающего корпус, штуцеры ввода и вывода сырья, две раздельные камеры радиации, каждая из которых снабжена отдельным радиантным змеевиком и горелками, общую камеру конвекции, разделенную перегородкой на две секции, в каждой из которых размещен конвективный змеевик.

Изобретение относится к области нефтепереработки и нефтехимии, в частности к трубчатым печам для нагрева нефтяного сырья. Изобретение касается трубчатой печи, включающей корпус с футеровкой, камеру радиации с радиантным змеевиком и горелками, камеру конвекции с трубным пучком, состоящим из трубных решеток с расположенными в них конвективными змеевиками, продольные перегородки, выполненные в виде уголков и расположенные в промежутках между трубами конвективного змеевика и футеровкой стенки камеры конвекции на трубных решетках, при этом их боковые полки направлены внутрь трубного пучка.

Изобретение относится к области нефтепереработки и нефтехимии, в частности к трубчатым печам для нагрева нефтяного сырья. Изобретение касается трубчатой печи, включающей корпус с футеровкой, камеру радиации с радиантным змеевиком и горелками, камеру конвекции с трубным пучком, состоящим из трубных решеток с расположенными в них конвективными змеевиками, продольные перегородки, расположенные в промежутках между трубами конвективного змеевика и футеровкой стенки камеры конвекции на трубных решетках, при этом продольные перегородки выполнены в виде пластин с возможностью поворота и с фиксацией их горизонтального положения на трубных решетках.

Изобретение относится к нефтепереработке, в частности к трубчатым печам для нагрева нефтяных остатков в процессах висбрекинга, термокрекинга, замедленного коксования.

Изобретение относится к способу производства углеводородов посредством термического разложения углеводородсодержащего загружаемого материала в печи для крекинга. При этом печь для крекинга имеет зону излучения и зону конвекции, где термический крекинг углеводородсодержащего загружаемого материала осуществляют в зоне излучения, и дымовой газ зоны излучения в зоне конвекции используют как теплоноситель для предварительного нагрева различных загружаемых материалов, углеводородсодержащий загружаемый материал предварительно нагревают и/или преобразуют в пар посредством расположенного в зоне конвекции теплообменника, и питательную воду котла посредством по меньшей мере одного расположенного в зоне конвекции теплообменника предварительно нагревают и/или преобразуют в пар. Способ характеризуется тем, что независимо от агрегатного состояния углеводородсодержащего загружаемого материала, температура дымового газа при выходе из зоны конвекции варьируется в диапазоне 30°С и является меньшей чем 150°С, и технологический режим потоков в теплообменниках зоны конвекции регулируют таким образом, что при газообразном углеводородсодержащем загружаемом материале почти 100% всей площади теплообмена всех теплообменников в зоне конвекции участвует в теплообмене с дымовым газом, в то время как при жидком углеводородсодержащем загружаемом материале в теплообмене с дымовым газом участвует только заданная доля от 100% площади поверхности теплообмена теплообменника в зоне конвекции, которая не служит для предварительного нагрева и/или преобразования в пар углеводородсодержащего загружаемого материала. По меньшей мере один теплообменник для нагрева и/или преобразования в пар питательной воды котла, который при газообразном углеводородсодержащем загружаемом материале обтекается питательной водой котла, при жидком углеводородсодержащем загружаемом материале не обтекается питательной водой котла, в частности, шунтируется или обходится посредством байпасного регулирования, и причем по меньшей мере один теплообменник с по меньшей мере одним другим, расположенным в зоне конвекции теплообменником может соединяться последовательно по потоку, при этом при жидком углеводородсодержащем загружаемом материале питательная вода котла пропускается в обход по меньшей мере одного теплоносителя, и только по меньшей мере один последующий другой теплоноситель обтекается для нагрева и/или преобразования в пар питательной водой котла, а при газообразном углеводородсодержащем загружаемом материале в первую очередь по меньшей мере один теплоноситель, а затем по меньшей мере один другой теплоноситель обтекаются питательной водой котла для нагрева и/или преобразования в пар питательной воды котла, и причем теплообменник для предварительного нагрева и/или преобразования в пар углеводородсодержащего загружаемого материала расположен на более холодном конце зоны конвекции, а по меньшей мере один теплообменник для нагревания и/или преобразования в пар питательной воды котла расположен в зоне более высокой температуры дымового газа. Предлагаемый способ позволяет оптимизировать работу печи и оптимизировать термический общий кпд для изменяющихся углеводородных загружаемых материалов. 4 з.п. ф-лы, 6 ил.
Наверх