Данные ультразвукового объемного изображения, переформатированные в виде последовательности плоских изображений

Изобретение относится к диагностическим ультразвуковым системам для трехмерной визуализации. Ультразвуковая диагностическая система визуализации содержит ультразвуковой датчик, выполненный с возможностью сбора набора данных 3-мерного изображения объемной области, блок мультипланарного переформатирования, реагирующий на набор данных 3-мерного изображения, выполненный с возможностью формирования множества 2-мерных изображений, блок задания последовательности изображений, реагирующий на 2-мерные изображения, выполненный с возможностью формирования последовательности 2-мерных изображений, которые могут быть воспроизведены в виде последовательности 2-мерных изображений стандартного формата, порт данных, связанный с блоком задания последовательности изображений, выполненный с возможностью передачи последовательности 2-мерных изображений в другую систему визуализации, и дисплей просмотра последовательностей 2-мерных изображений. Система визуализации дополнительно содержит пользовательский интерфейс управления для выбора нормального направления через набор 3-мерных данных, который содержит выбор плоскости 2-мерного изображения, проходящей через набор 3-мерных данных, причем изображения последовательности 2-мерных изображений, сформированных блоком переформатирования данных изображения, параллельны плоскости выбранной плоскости 2-мерного изображения. Использование изобретения позволяет облегчить перенос и использование данных 3-мерного изображения на других платформах для медицинских изображений. 11 з.п. ф-лы, 4 ил.

 

Данное изобретение относится к диагностическим ультразвуковым системам и, в частности, к ультразвуковым системам для трехмерной (3-мерной) визуализации, которые способны экспортировать данные объемного изображения в виде последовательности плоских изображений.

В процессе ультразвуковой диагностической визуализации обычно сканировали двухмерные изображения поперечных сечений анатомических структур тела. К настоящему моменту развития технологии ультразвуком можно сканировать и визуализировать трехмерные объемы как в форме неподвижных изображений, так и в реальном времени. Наборы 3-мерных данных сканированного объема можно последовательно представлять как трехмерные изображения достаточно быстро для того, чтобы врач наблюдал перемещение анатомических структур в реальном времени. Но для радиологов и кардиологов по-прежнему привычнее просматривать стандартные 2-мерные плоские изображения анатомических структур, и многим из них еще неудобно диагностировать анатомические структуры в 3 измерениях, причем проблема осложняется помехами от ткани, которая часто окружает и загораживает изучаемую область в центре визуализируемого объема. В результате многие врачи предпочитают видеть плоские 2-мерные изображения в виде «слоев» 3-мерного объема. После того как набор данных 3-мерного изображения объема собран, метод, названный мультипланарным переформатированием, позволяет врачу выбирать, по меньшей мере, одну плоскость сечения, проходящую через объем, для наблюдения 2-мерных изображений. На обычном пользовательском интерфейсе врач может позиционировать три ортогональные прямые линии в изображении объема. Каждая линия представляет положение одной из трех ортогональных плоскостей изображения, проходящих через объем, плоскость x-y (азимут и глубина), плоскость y-z (глубина и высота, обычно называемая C-плоскостью) и плоскость x-z (азимут и высота). Когда изменяют положение прямых линий, 2-мерные изображения соответствующих плоскостей сечения формируются по вокселям набора данных, пересекаемого плоскостями сечения. В патенте США 6572547 (Miller с соавторами) показано использование упомянутых плоскостей сечения для визуализации наконечника катетера по трем разным ракурсам визуализации.

Дополнительное ограничение трехмерной визуализации состоит в том, что наборы данных 3-мерных изображений форматируются различным образом разными поставщиками систем ультразвуковой визуализации, так как поставщики стремятся обеспечить обработку и хранение больших наборов (3-мерных) данных, характерных для трехмерной визуализации. С целью совмещения упомянутых различных фирменных подходов рабочая группа комитета по стандартам DICOM (формирования и передачи цифровых изображений в медицине) опубликовала в апреле 2009 г. приложение 43 к стандарту, специально предназначенное для стандарта DICOM по хранению 3-мерных ультразвуковых изображений. Однако исполнение данного стандарта для 3-мерных ультразвуковых изображений было не быстрым делом, и планы разных поставщиков по преобразованию систем визуализации, например систем PACS (систем архивации и передачи медицинских изображений), в новый 3-мерный стандарт, остаются, в основном, неизвестными. Соответственно, по-прежнему существует потребность в обеспечении данных 3-мерного изображения в стандартизированном формате, который допускает их легкий перенос и использование на других платформах для медицинских изображений, которые не исполняли стандарт DICOM для 3-мерных ультразвуковых изображений.

В соответствии с принципами настоящего изобретения предлагается ультразвуковая система, которая переформатирует данные 3-мерных изображений в виде, по меньшей мере, одной последовательности 2-мерных изображений в направлениях соответствующих плоскостей сечения, которую можно переносить на другие платформы для визуализации и воспроизводить и диагностировать как стандартизированную последовательность 2-мерных изображений в реальном времени. Пользовательский интерфейс обеспечивает выбор направления плоскости сечения, межплоскостного интервала и/или числа изображений в последовательности. Затем объем переформатируется в плоские изображения в выбранном(ых) направлении(ниях) плоскости(ей) сечения и сохраняется в виде, по меньшей мере, одной последовательности изображений, что дает возможность воспроизводить каждую последовательность на наиболее распространенных платформах для медицинской визуализации, предпочтительно, в виде последовательностей 2-мерных изображений в стандарте DICOM.

На чертежах:

Фигура 1 - изображение в виде блок-схемы ультразвуковой системы, сконструированной в соответствии с принципами настоящего изобретения.

Фигура 2 - изображение последовательности этапов получения набора 3-мерных данных и переформатирования данных в виде, по меньшей мере, одной последовательности плоских изображений в соответствии с настоящим изобретением.

Фигура 3 - изображение линий, проходящих через 3-мерное изображение, показывающих положение плоскостей сечения в соответствии с настоящим изобретением.

Фигура 4 - изображение порядка формирования трех последовательностей плоских изображений из набора данных объемного изображения в соответствии с настоящим изобретением.

На фигуре 1 показана блок-схема ультразвуковой системы, сконструированной в соответствии с принципами настоящего изобретения. Ультразвуковой датчик 10 с матричным преобразователем 12 излучает ультразвуковые волны в тело пациента и в ответ принимает эхо-сигналы из объемной области. Известно несколько методов ультразвукового сканирования объемной области тела. Один из методов заключается в перемещении ультразвукового датчика, содержащего одномерный матричный преобразователь, по коже в направлении, нормальном к плоскости изображения датчика. Соответственно, датчик будет получать последовательность, по существу, параллельных плоскостей изображений по мере того, как датчик перемещается, и данные изображений плоскостей изображений содержат наборы данных 3-мерных изображений. Данный ручной метод, названный ручным сканированием, описан в патенте США 5474073 (Schwartz с соавторами). Второй метод заключается в механическом колебании матричного преобразователя взад и вперед внутри камеры датчика. Соответственно, датчик будет получать такие же данные из последовательности, по существу, параллельных плоскостей изображений, как при ручном методе, но в данном случае механическое колебание матричного преобразователя может быть достаточно быстрым для обеспечения 3-мерных изображений в реальном времени. Третий метод заключается в использовании датчика с двухмерным матричным преобразователем, пучки которого можно сканировать электронным способом в трех измерениях посредством управления пучками с помощью фазированной решетки. 3-мерный датчик с двухмерной матрицей данного назначения описан в патенте США 5993390 (Savord с соавторами). В предпочтительном варианте данного третьего метода используют датчик без подвижных частей и электронное управление пучками можно осуществлять достаточно быстро даже для сканирования сердца, с визуализацией в реальном времени. Каждый из упомянутых методов сканирования способен обеспечивать набор данных 3-мерного изображения, пригодный для использования в связи с настоящим изобретением.

Эхосигналы, принятые отдельными преобразовательными элементами решетки 12, обрабатываются формирователем 14 пучка для формирования когерентных эхосигналов, относящихся к конкретным точкам тела. Эхосигналы обрабатываются процессором 16 сигналов. Обработка сигналов может содержать выделение гармонических составляющих эхосигналов, например, для гармонической визуализации и устранения помех. Обработанные сигналы организуются в изображения требуемого формата, например, трапециевидного сектора или куба, посредством процессора 18 изображений. Данные 3-мерного изображения организуются в собственных координатах x-y-z в объемной области и сохраняются в памяти 20 изображений. Данные 3-мерного изображения представляются в виде трехмерного изображения посредством блока 22 объемного рендеринга. Серии изображений, представленных в объеме, могут динамически отображаться с кинетическим параллаксом таким образом, что пользователь может поворачивать, переориентировать и перепозиционировать объем для разных ракурсов наблюдения, как поясняется в патенте США 6117080 (Schwartz). Изображения обрабатываются для отображения дисплейным процессором 24, который может накладывать графику на 3-мерное изображение, и изображение отображается на графическом дисплее 26.

3-мерное объемное изображение можно также рассматривать путем «получения слоев» объема и отображения отдельного слоя в виде 2-мерного изображения. Местоположение слоя в объеме выбирается пользователем посредством манипуляции элементом управления на пользовательском интерфейсе 28 управления. Элемент пользовательского управления будет выбирать отдельную 2-мерную плоскость в 3-мерном объеме, как описано выше, и блок 30 мультипланарного переформатирования выбирает планарные данные из набора 3-мерных данных, которые имеют оси координат в выбранной плоскости. 2-мерное изображение выбранной плоскости представляется на дисплее 26 либо отдельно, либо в сочетании с 3-мерным изображением. Как описано выше, пользовательский интерфейс управления может представлять пользователю три различно окрашенные линии или курсоры, каждый из которых может выбирать плоскость с соответствующей, взаимно ортогональной ориентацией. Затем пользователь может одновременно наблюдать три ортогональные плоскости, проходящие через 3-мерный объем, как поясняется, например, в патенте США 6572547 (Miller с соавторами).

В соответствии с принципами настоящего изобретения данные изображения 3-мерного объема организуются в виде последовательности изображений последовательных, параллельных плоскостей объема. Последовательность изображений может сохраняться в виде последовательности кадров в ультразвуковом мультикадровом изображении в стандарте DICOM, которое может сохраняться и воспроизводиться на большинстве рабочих станций для медицинской визуализации и в системах PACS в виде последовательности 2-мерных изображений, сохраненной в виде ультразвукового мультикадрового изображения в стандарте DICOM. Тем самым врач может просматривать данные изображения 3-мерного объема в виде последовательности плоскостей сечения, проходящих через объем. Врач может быстро воспроизводить последовательность изображений, создавая впечатление «прохода сквозь» объем. Или врач может ступенчато продвигаться по последовательности в замедленном темпе или фиксировать отдельное изображение в плоскости, которая делает сечение через изучаемую область для диагностики. Затем данные 3-мерного объема можно просматривать как 2-мерные изображения, которые для врача более удобны и привычны, чем 3-мерное изображение объема.

В исполнении, показанном на фигуре 1, пользователь управляет пользовательским интерфейсом управления для выбора ориентации плоскостей подлежащей(их) созданию последовательности (или последовательностей) 2-мерных изображений. Стандартные 2-мерные изображения имеют азимутальную (x) координату и координату глубины (y), и врач может, например, получать, по желанию, плоскости сечения, ориентированные в последовательности плоскостей x-y, каждую из плоскостей сечения с разной координатой z (высоты) в объеме. Данный выбор подается в блок 30 мультипланарного переформатирования, который выбирает последовательность плоскостей x-y изображений набора 3-мерных данных. Данная последовательность изображений плоскостей x-y сечения подается в блок 32 задания последовательности изображений, который обрабатывает изображения в виде последовательности 2-мерных изображений. Последовательность изображений может иметь фирменный (заказной) формат, используемый конкретной ультразвуковой системой, но в предпочтительном варианте 2-мерные изображения обрабатываются в соответствии со стандартом DICOM для двухмерных медицинских изображений. При форматировании в стандарте DICOM последовательность изображений можно воспроизводить и наблюдать на самых разных платформах для медицинской визуализации. Последовательность 2-мерных изображений сохраняется в памяти 34 Cineloop® в виде последовательности или «киноцикла» 2-мерных изображений. Последовательность изображений можно передавать в другие системы и платформы для визуализации через порты передачи данных изображений ультразвуковых систем. Последовательность изображений в соответствии с настоящим изобретением можно передавать в рабочую станцию для просмотра изображений в другом отделении больницы, например, по больничной сети передачи данных изображений.

В предпочтительном варианте осуществления настоящего изобретения пользователь может задавать и выбирать дополнительные параметры последовательности 2-мерных изображений 3-мерного объема. Как показано на фигуре 1, пользовательский интерфейс 28 управления использует одинаковые или отличающиеся элементы пользовательского управления для назначения отличающихся характеристик последовательности 2-мерных изображений, включая выбор числа изображений в последовательности и межплоскостной интервал плоскостей сечения последовательности. Элементы пользовательского управления могут также обеспечивать для пользователя возможность выбора отдельного субобъема 3-мерного объема для плоскостей сечения. Например, пользователь может выбрать точно центральную треть объема для последовательности 2-мерных изображений. В другом примере весь 3-мерный объем следует переформатировать в плоскости 2-мерных изображений в виде последовательности из 100 плоскостей изображений. Блок мультипланарного переформатирования получает данный выбор и распределяет 100 плоскостей сечения через равные интервалы по объему в выбранной ориентации. В другом примере пользователь выбирает 2-мм межплоскостной интервал, и блок мультипланарного переформатирования выполняет сечения плоскостей 2-мерных изображений с 2-мм интервалами по объему в выбранной ориентации.

На фигуре 2 представлен способ обеспечения и экспорта последовательности 2-мерных изображений 3-мерного объема в соответствии с настоящим изобретением. На этапе 40 врач сканирует объемную область тела для получения набора 3-мерных данных. На этапе 42 врач наблюдает представленное 3-мерное изображение и выбирает, по меньшей мере, одну ориентацию плоскостей для, по меньшей мере, одной последовательности изображений, в которой будут выполняться сечения объема посредством блока мультипланарного переформатирования. Врач может выбрать две последовательности, например одну последовательность с плоскостями сечения, имеющими координаты x-y, и другую последовательность с плоскостями сечения, имеющими координаты y-z. В созданном варианте осуществления выбор ориентации плоскостей для последовательности выполняется посредством выбора и просмотра плоскости изображения MPR (мультипланарной реконструкции). Затем, другие изображения последовательности будут форматироваться в плоскостях, параллельных выбранной плоскости. На этапе 44 врач выбирает число плоскостей изображения каждой последовательности. Например, врач может выбрать 50 плоскостей для последовательности плоскостей x-y и 20 плоскостей для последовательности плоскостей y-z. На этапе 46 врач выбирает интервал между плоскостями изображений. Например, врач может выбрать 1-мм интервал между плоскостями x-y и 2-мм интервал между плоскостями y-z. Если межплоскостной интервал этого этапа слишком велик для числа плоскостей, выбранного на этапе 44, то система предупредит пользователя о конфликте, чтобы пользователь мог выбрать один или другой параметр. Если межплоскостной интервал выбран слишком малым для полного объема, то система распределит выбранное число плоскостей с выбранным межплоскостным интервалом около центра объема, где пользователи чаще всего позиционируют исследуемую область. В качестве альтернативы пользователь может задавать субобласти объема, по которым должны быть распределены плоскости. В созданном варианте осуществления отсутствует необходимость исполнять этапы 44 и 46; ультразвуковая система автоматически обеспечивает плоскости данных изображения с одной стороны 3-мерного объема до другой его стороны и обеспечивает плоскости изображений с наименьшим межплоскостным интервалом, допускаемым ультразвуковой системой. На этапе 48 блок мультипланарного переформатирования и блок задания последовательности изображений обеспечивают заданную(ные) последовательность(ти) изображений. На этапе 50 последовательность(ти) изображений экспортируется(ются) в рабочую станцию для визуализации в виде ультразвукового мультикадрового изображения в стандарте DICOM для просмотра и диагностики.

На фигуре 3 представлено графическое изображение на экране дисплея 26, на котором показана сетка линий плоскостей сечения, которые показывают пользователю плоскости, которые будут переформатированы в последовательности 2-мерных изображений. С левой стороны экрана 60 дисплея находится ультразвуковое изображение 66, которое ориентировано в плоскости x-y. На данное изображение 66 наложена сетка 64 вертикальных линий, которые показывают серии сечений, проходящих через объем в направлении y-z (по высоте). Упомянутая сетка 64 показывает пользователю, что участок объема, охваченный упомянутыми тридцатью плоскостями сечения, будет переформатирован в последовательность из тридцати 2-мерных изображений в координатах y-z. С правой стороны дисплея находится второе изображение 68, пересекающее объем в координатах x-y, на которое наложена сетка 62 горизонтальных линий. Сетка 62 показывает пользователю, что субобласть объема, продолжающаяся почти от верха изображения вниз на, приблизительно, две трети полной глубины изображения, будет переформатирована в последовательность из тридцати изображений C-плоскостей, то есть изображений, которые ориентированы, каждое, в координатах x-z и расположены на последовательных глубинах (с приращениями в направлении y) объема. Сетка 62 подкреплена графической рамкой 60, которая сверху показывает с помощью небольших контрольных меток расположение плоскостей сечения в координатах y-z, которые установлены на левостороннем изображении 66. Следовательно, пользователь может сразу видеть относительные местоположения двух наборов ортогональных линий сеток и плоскостей сечения.

Пользователю предоставляется также возможность поворачивать или наклонять сетки 62, 64 и тем самым создавать линии плоскостей сечения, которые наклонены или повернуты по отношению к номинальной ориентации точно горизонтальных или вертикальных плоскостей сечения.

На фигуре 4 представлены три последовательности 74, 84, 94 изображений, которые сформированы посредством исполнения настоящего изобретения. Экран 70 дисплея с левой стороны фигуры 4 показывает ультразвуковое изображение 72, полученное сечением объема в координатах x-y, и последовательность 74 изображений 2-мерных изображений, которые находятся в последовательных плоскостях x-y, проходящих через объем и набор 3-мерных данных. В центре фигуры 4 находится экран 80 дисплея, представляющий изображение 84 в плоскости y-z, и ниже данного изображения находится последовательность 84 изображений в последовательных плоскостях y-z сечения, проходящих через объем и набор 3-мерных данных. С правой стороны фигуры 4 находится экран 90 дисплея, представляющий C-плоскость 92 (в координатах y-z), и ниже него находится последовательность 94 изображений, полученных сечением по последовательным плоскостям x-z объема и набора 3-мерных данных. Три последовательности изображений представляют изображения, полученные сечением по взаимно ортогональным плоскостям объема и набора 3-мерных данных, при этом одна последовательность продолжается в направлении z, вторая последовательность продолжается в направлении x и третья последовательность продолжается в направлении y. Пользователь может экспортировать одну, две или все три последовательности изображений в виде изображений в стандарте DICOM в рабочую станцию для работы с изображениями для дальнейшего анализа и диагностики.

Поскольку каждая плоскость сечения проходит через полный набор данных 3-мерного изображения, то каждое 2-мерное изображение в плоскости сечения, соответственно, пересекает и содержит все данные изображения, собранные для конкретного переформатированного изображения. В предпочтительном варианте осуществления 2-мерные изображения находятся в прямоугольных координатах и каждая последовательность изображений состоит из последовательных плоскостей сечения в соответствующем ортогональном направлении прямоугольных координат. Соответственно, 2-мерные изображения пригодны для измерения и количественного анализа в такой же степени, как стандартное 2-мерное изображение, полученное обычными средствами с помощью одномерного матричного преобразователя.

1. Ультразвуковая диагностическая система визуализации, формирующая данные 3-мерного изображения объемной области тела, содержащая:
ультразвуковой датчик (10), выполненный с возможностью сбора набора данных 3-мерного изображения объемной области;
блок (30) мультипланарного переформатирования, реагирующий на набор данных 3-мерного изображения, выполненный с возможностью формирования множества 2-мерных изображений (72, 82, 92);
блок (32) задания последовательности изображений, реагирующий на 2-мерные изображения (72, 82, 92), выполненный с возможностью формирования последовательности 2-мерных изображений (74, 84, 94), которые могут быть воспроизведены в виде последовательности 2-мерных изображений (74, 84, 94) стандартного формата;
порт данных, связанный с блоком (32) задания последовательности изображений, выполненный с возможностью передачи последовательности 2-мерных изображений (74, 84, 94) в другую систему визуализации; и
дисплей (26), выполненный с возможностью просмотра последовательностей 2-мерных изображений (74, 84, 94);
характеризующаяся тем, что ультразвуковая диагностическая система визуализации дополнительно содержит пользовательский интерфейс (28) управления, управляемый пользователем системы визуализации для выбора нормального направления через набор 3-мерных данных, причем выбор нормального направления содержит выбор плоскости 2-мерного изображения, проходящей через набор 3-мерных данных, причем изображения последовательности 2-мерных изображений (74, 84, 94), сформированных блоком (30) переформатирования данных изображения, параллельны плоскости выбранной плоскости 2-мерного изображения.

2. Ультразвуковая диагностическая система визуализации по п. 1, в которой блок (32) задания последовательности изображений дополнительно выполнен с возможностью формирования последовательностей 2-мерных изображений (74, 84, 94), которые соответствуют формату DICOM.

3. Ультразвуковая диагностическая система визуализации по п. 2, в которой другая платформа для визуализации выполнена с возможностью воспроизведения последовательностей 2-мерных изображений (74, 84, 94) в виде последовательностей изображений в формате DICOM.

4. Ультразвуковая диагностическая система визуализации по п. 1, дополнительно содержащая память киноцикла (34), выполненную с возможностью хранения каждой последовательности 2-мерных изображений (74, 84, 94), сформированных блоком (32) задания последовательности изображений в виде киноцикла изображений,
при этом последовательность 2-мерных изображений (74, 84, 94) выполнена с возможностью воспроизведения на дисплее.

5. Ультразвуковая диагностическая система визуализации по п. 4, в которой последовательность 2-мерных изображений (74, 84, 94) выполнена с возможностью воспроизведения из памяти (34) киноцикла в виде последовательностей изображений в реальном времени или воспроизведения и остановки для просмотра конкретного одного из 2-мерных изображений на дисплее (26).

6. Ультразвуковая диагностическая система визуализации по п. 1, в которой пользовательский интерфейс (28) управления дополнительно допускает управление пользователем для выбора до трех ортогональных нормальных направлений для до трех наборов данных ортогональных 2-мерных изображений,
при этом блок (30) мультипланарного переформатирования и блок (32) задания последовательности изображений реагируют на выбор до трех ортогональных нормальных направлений для формирования до трех последовательностей 2-мерных изображений (74, 84, 94) из набора 3-мерных данных.

7. Ультразвуковая диагностическая система визуализации по п. 1, в которой пользовательский интерфейс (28) управления дополнительно выполнен с возможностью управления пользователем для выбора интервала между плоскостями сечения.

8. Ультразвуковая диагностическая система визуализации по п. 1, в которой пользовательский интерфейс (28) управления дополнительно выполнен с возможностью управления пользователем для выбора числа плоскостей сечения,
при этом число плоскостей сечения равно числу 2-мерных изображений каждой последовательности, сформированной блоком (32) задания последовательности изображений.

9. Ультразвуковая диагностическая система визуализации по п. 1, дополнительно содержащая блок (22) объемного рендеринга, реагирующий на набор данных 3-мерного изображения, для формирования визуально воспроизводимого 3-мерного ультразвукового изображения,
при этом дисплей (26) дополнительно выполнен с возможностью отображения визуально воспроизводимого 3-мерного ультразвукового изображения.

10. Ультразвуковая диагностическая система визуализации по п. 1, дополнительно содержащая дисплейный процессор (24), связанный с дисплеем (26), который формирует графику, накладываемую на ультразвуковое изображение, получаемое датчиком (10), которая указывает пространственные местоположения последовательности плоскостей 2-мерных изображений (74, 84, 94).

11. Ультразвуковая диагностическая система визуализации по п. 10, в которой графика дополнительно содержит сетку линий плоскостей сечения, при этом система дополнительно содержит пользовательский интерфейс (28) управления, посредством которого пользователь может настраивать, по меньшей мере, одно из числа плоскостей сечения сетки, интервала между плоскостями сечения сетки и положения плоскостей сечения относительно пространственного местоположения объемной области.

12. Ультразвуковая диагностическая система визуализации по п. 11, дополнительно содержащая пользовательский интерфейс (28) управления, посредством которого пользователь может поворачивать или наклонять плоскости сечения, проходящие через объемную область.



 

Похожие патенты:

Предложенная группа изобретений относится к области медицины. Предложен способ неинвазивной пренатальной диагностики анеуплоидий плода, включающий выделение внеклеточной ДНК из образца крови беременной женщины, приготовление геномных библиотек и их обогащение регионами генома, секвенирование, картирование полученных чтений на референсный геном, корректировку полученного значения покрытия для каждого региона генома на общее покрытие генома, сравнение скорректированного значения покрытия со значениями покрытий, полученных для обучающей выборки и определение наличия анеуплоидий плода.

Изобретение относится к способам контроля выбросов отработавших газов при эксплуатации двигателя. Представлен способ обнаружения всасывания углеводородов в двигатель на основании одновременного отслеживания неустойчивости в работе цилиндров и повышенного тепловыделения отработавших газов.

Изобретение относится к технологиям связи. Технический результат заключается в повышении скорости передачи данных в сети.

Изобретение относится к медицинской технике. Система персонифицированной медицины содержит модуль регистрации обследования пациента, базу данных, модуль формирования компонентов риска здоровью, модуль формализованного описания показателей, модуль формирования функций оценивания риска здоровью, модуль определения рангов частных критериев риска здоровью, модуль расчета обобщенных показателей риска здоровью на промежуточных уровнях иерархии, модуль автоматизированного формирования персонифицированных медицинских рекомендаций, первый выход которого подключен к базе данных, а второй - к внешнему устройству вывода результатов пациенту.

Изобретение относится к медицинской технике, а именно к средствам автоматической оценки сигнала фонокардиограммы. Устройство обработки сигналов содержит фонокардиограммный интерфейс, данные которого собраны от пациента в соответствии с соответствующим набором собираемых свойств этого сигнала, выбранных из по меньшей мере одного из места прослушивания, информации о том, дышал пациент или задерживал дыхание, информации о том, был ли пациент в покое или выполнял физические упражнения перед сбором сигнала; процессор, выполненный с возможностью анализа первого сигнала фонокардиограммы, использующего его соответствующий набор собираемых свойств, и обеспечения анализа и доверительного значения анализа; и устройство управления последовательностью операций, выполненное с возможностью определения возможно ли, что последующий сигнал фонокардиограммы, если он собран от пациента в соответствии с другим набором собираемых свойств, повысит точность анализа, и в таком случае координации сбора последующего сигнала фонокардиограммы от пациента в соответствии с другим набором собираемых свойств.

Изобретение относится к области повышения энергетической эффективности машин, оборудованных активным рабочим органом непрерывного действия, который имеет возможность изменять нагрузочный режим в процессе выполнения технологической операции.
Изобретение относится к области медицинской и молекулярной генетики. Способ определения ингибирующей FACT активности у моделей химических соединений с использованием компьютерного моделирования белок-лигандного докинга предусматривает формирование молекулярной модели SptM домена белка FACT, включающего участки а.о.

Изобретение относится к автоматизированным системам и системам автоматического управления и может быть использовано при управлении сложными объектами, а также для решения задач распознавания и анализа данных объектов, ситуаций, процессов или явлений произвольной природы, описываемых слабо формализуемыми признаками.

Изобретение относится к технике телекоммуникационных систем и систем связи и может быть использовано для организации оперативного управления и связи в службах скорой помощи, министерства по чрезвычайным ситуациям, других министерств и ведомств.

Изобретение относится к компьютерным системам визуализации пористых пород. Техническим результатом является повышение точности сегментации данных при построении модели образца пористой среды.

Изобретение относится к гидроакустическим системам навигации подводных аппаратов. Технический результат - снижение гидродинамических шумов и расширение частотной полосы антенны в области низких частот.

Изобретение относится к области медицины, в частности к ультразвуковой диагностической системе формирования изображений для измерения волн сдвига, которая передает побуждающие импульсы в форме энергетической полосы.

Изобретение относится к медицинской технике, а именно к средствам для оценки регургитационного потока. Система содержит ультразвуковой датчик, содержащий матрицу преобразователей, процессор изображений, доплеровский процессор, процессор для вычисления потоков, выполненный с возможностью создания модели поля скоростей потока около местонахождения регургитационного потока и устройство отображения.

Изобретение относится к технике связи и может использоваться системами получения информации о субъекте, принимающем упругие волны. Технический результат состоит в повышении точности приема информации за счет увеличения пространственной разрешающей способности.

Изобретение относится к области гидроакустики. Технический результат изобретения заключается в упрощении конструкции антенны и уменьшении ее массогабаритных параметров.

Изобретение относится к области гидроакустики и может быть использовано для измерения параметров звукового поля в морской среде с использованием как стационарных, так и подвижных носителей.

Изобретение относится к области гидро- и геоакустики и может быть использовано в морях, океанах, пресноводных водоемах в качестве донной кабельной антенны для проведения исследований и мониторинга сейсмоакустической эмиссии на шельфе в обеспечение инженерно-геофизических работ на морском дне.

Изобретение относится к области гидроакустики, а именно к гидроакустическим антеннам, и может быть использовано в гидроакустических донных или опускаемых станциях различного назначения.

Изобретение относится к области радиолокации. Достигаемый технический результат - повышение точности и сокращение времени моделирования сигнала, отраженного от земной поверхности.

Изобретение относится к технике акустики и может использоваться в медицинской аппаратуре для ультразвуковой эхографии. Технический результат состоит в расширении угла обзора движений посредством ультразвуковых изображений.

Изобретение относится к области гидрографии и может быть использовано для изучения поля рельефа дна в Мировом океане в целях навигационного гидрографического обеспечения флота и народного хозяйства.
Наверх