Способ управления процессом бурения и система для его осуществления



Способ управления процессом бурения и система для его осуществления
Способ управления процессом бурения и система для его осуществления
E21B44/00 - Системы автоматического управления или регулирования процессом бурения, т.е. самоуправляемые системы, осуществляющие или изменяющие процесс бурения без участия оператора, например буровые системы, управляемые ЭВМ (неавтоматическое регулирование процесса бурения см. по виду процесса; автоматическая подача труб со стеллажа и соединение бурильных труб E21B 19/20; регулирование давления или потока бурового раствора E21B 21/08); системы, специально предназначенные для регулирования различных параметров или условий бурового процесса (средства передачи сигналов измерения из буровой скважины на поверхность E21B 47/12)

Владельцы патента RU 2569652:

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ухтинский государственный технический университет" (RU)

Изобретение относится к области бурения нефтяных и газовых скважин и может быть использовано для оптимального управления процессом бурения. Техническим результатом является упрощение структуры системы управления, увеличение точности управления, оптимизация систем измерения, снижение вибраций бурильной колонны и как результат увеличение скорости проходки скважины. Способ включает измерение скорости изменения мощности привода ротора буровой установки, измерение скорости изменения частоты вращения вала привода. Причем в канал измерения мощности привода ротора буровой установки и в канал измерения частоты вращения вала привода введены операция дифференцирования и операция деления результатов измерения скорости изменения мощности привода ротора буровой установки на результат измерения скорости изменения частоты вращения вала привода, определяющая градиент изменения крутящего момента на валу привода ротора буровой установки, при этом регулирование частоты вращения вала привода проводится по знаку градиента изменения крутящего момента на валу привода ротора буровой установки. 2 н.п. ф-лы, 2 ил.

 

Изобретение относится к области бурения нефтяных и газовых скважин и может быть использовано для оптимального управления процессом бурения.

Известен способ адаптивного управления процессом бурения скважин по патенту РФ №2495240, МПК E21B 44/00, опубл. 04.05.2012, включающий использование модели процесса бурения, технический результат в которой достигается оперативным управлением коэффициентами этой модели, значения которых определяются минимальными вибрациями бурильной колонны.

Недостатками способа являются предварительное построение модели процесса бурения, привязанное конкретно к данной геологической структуре, знанию ее геологического строения и твердости пород, а также проведение бесконечного множества скважинных измерений. Использование детерминированной модели часто приводит к ее непредсказуемому обновлению и, как следствие, низкой точности управления. Использование сложной наземной аппаратуры и скважинной системы измерения забойных параметров создает дополнительные, иногда нерешаемые задачи.

Известен способ управления работой в скважине и система бурения скважины по патенту РФ 2244117, МПК E21B 44/00, опубл. 10.01.2005. Техническая реализация известного способа осуществляется с использованием вычислительной модели процесса бурения, представляющей комбинированное влияние условий на забое скважины и работы колонны бурильных труб. Модель процесса бурения непрерывно обновляется результатами скважинных измерений, производимых в ходе операции бурения. На основании непрерывных измерений вырабатываются и исполняются различные сценарии управления для передачи данных в систему управления наземным оборудованием.

Недостатком способа является необходимость предварительного построения модели процесса бурения и ее коррекция текущими значениями параметров бурения. Однако колонна бурильных труб, как объект управления, является неустойчивой [4], и текущие параметры бурения изменяются по кривым колебательного процесса, что исключает возможность их использования для целей коррекции.

Известен способ и устройство для уменьшения колебаний прилипания-проскальзывания колонны бурильных труб по патенту РФ №2478781, МПК E21B 44/00, опубл. 10.04.2013, патентообладатель НЭШНЛ ОЙВЕЛЛ ВАРКО (US), в котором демпфирование колебаний осуществляется путем использования бурильного механизма изменения веса бурильной колонны и регулирование скорости вращения бурильного механизма с использованием ПИ-регулятора. Недостатком предложенного изобретения является сложность настройки ПИ-регулятора с использованием скважинных измерений. Включение ПИ-регулятора в цепь управления бурильной колонной повышает порядок астатизма замкнутой структуры, что еще более ухудшает условия устойчивости системы управления. Использование полосы оптимальных частот не позволяет реализовать надежное управление с углублением скважины.

Наиболее близким по сущности предлагаемого изобретения является способ управления колебаниями в буровом оборудовании и система для его осуществления по патенту РФ 2087701 С1, МПК E21B 44/00, опубл. 20.08.1997, где колебания в буровом оборудовании регулируются посредством определения потока энергии через оборудование как произведение «поперечной» переменной и «сквозной» переменной. Причем колебания одной переменной измеряются, а поток энергии регулируется путем изменения другой переменной в ответ на измеряемые колебания упомянутой одной переменной. В качестве переменных величин для определения потока энергии используются напряжение, умноженное на ток электрического привода, давление, умноженное на скорость потока гидравлического привода, или крутящий момент, умноженный на угловую скорость вала вращательного привода.

Способ управления колебаниями в буровом оборудовании реализуется системой, содержащей средства измерения колебаний продольной и поперечной переменной, связанные со средствами контроля истока энергии через буровое оборудование и средство регулирования крутильных колебаний оборудования путем поддержания потока энергии через буровое оборудование на заданном уровне. Дополнительно система снабжена средствами определения крутящего момента приводного двигателя и средствами его регулирования.

Предпосылки изобретения.

Бурение нефтяной или газовой скважины включает в себя создание ствола скважины значительной глубины, часто в несколько километров по вертикали. Бурильная колонна содержит буровое долото на своем нижнем конце и звенья трубы, свинченные вместе. Бурильную колонну вращает бурильный механизм на поверхности, колонна в свою очередь вращает долото для проходки скважины. Бурильный механизм, обычно верхний привод или ротор, по существу является массивным маховиком. Бурильная колонна является гибкой конструкцией и во время бурения может закручиваться под действием крутящего момента, запасая потенциальную энергию. При достаточном ее запасе наблюдается прокручивание низа колонны (проскальзывание), т.е. наблюдается процесс перехода потенциальной энергии в кинетическую.

На основании работ Перминова Б.А., Перминова В.Б., Заикина С.Ф., Быкова И.Ю. [1-5], возникающие в результате превращения энергии крутильные автоколебания бурильной колонны определяют колонну как неустойчивый объект управления. Это положение подтверждается и анализом структурной схемы бурильной колонны [4], из которого следует, что как объект управления колонна бурильных труб является структурно неустойчивым звеном. Это означает, что процесс бурения скважины всегда сопровождается автоколебаниями бурильной колонны, что существенно уменьшает механическую скорость проходки скважины, увеличивает износ бурового инструмента. Приведенные способы оптимизации управления процессом бурения не позволяют эффективно демпфировать автоколебания бурильной колонны, сопряжены со сложностями скважинных измерений, а управление с использованием моделирования не выдерживает критики, так как невозможно создать модель структурно неустойчивого объекта управления.

Задачей изобретения является устранение недостатков демпфирования автоколебаний бурильной колонны в процессе бурения и предложение дешевого и разумного способа управления процессом бурения и системы для его осуществления, обеспечивающих регулирование автоколебаний в оборудовании для бурения.

Сущность изобретения.

Автоколебания бурильной колонны в процессе углубления скважины демпфируются посредством определения градиента изменения крутящего момента на приводе буровой установки как частного от деления скорости изменения мощности привода ротора буровой установки на скорость изменения частоты вращения вала привода. Причем по знаку градиента изменения крутящего момента на приводе ротора буровой установки частота вращения вала привода, а, следовательно, и бурильной колонны либо увеличивается, либо уменьшается в пределах определяемых геологической структурой разбуриваемой породы.

Способ управления процессом бурения, позволяющий эффективно демпфировать автоколебания бурильной колонны, реализуется системой бурения, содержащей средства измерения градиента изменения крутящего момента, блока определения знака градиента, регулятора, обеспечивающего изменение частоты вращения вала привода с задатчиком максимальной и минимальной частоты вращения, определяемой геологической структурой породы.

Способ управления процессом бурения в соответствии с настоящим изобретением заключается в регулировании частоты вращения вала привода ротора буровой установки, по измеренному значению градиента изменения крутящего момента и знаку этого градиента.

Способ управления процессом бурения в соответствии с настоящим изобретением основан на понимании того, что срыв установившегося процесса бурения и возникновение автоколебаний происходит в результате воздействия на бурильную колонну какого-либо возмущения, например резкого изменения момента сопротивления. Это приводит к динамическому набросу крутящего момента на валу привода ротора буровой установки вследствие изменения мощности привода и частоты вращения вала привода. Если измерять скорости изменения мощности привода и частоты вращения с использованием дифференцирующих фильтров, работы Перминова Б.А., Перминова В.Б. [1-3], то градиент изменения крутящего момента можно определить соотношением:

где - скорость изменения мощности привода ротора буровой установки, Вт/с;

- скорость изменения частоты вращения вала привода, об/с;

gradM - градиент изменения крутящего момента на валу привода, Нм/об.

Эффективный способ управления процессом бурения состоит в определении градиента изменения крутящего момента на валу привода, который определяется как частное от деления скорости изменения мощности привода ротора буровой установки на скорость изменения частоты вращения вала привода, определении знака градиента крутящего момента и регулировании частоты вращения вала привода по знаку градиента при постоянном оптимальном значении осевой нагрузки.

Система для осуществления способа управления процессом бурения в соответствии с настоящим изобретением включает в себя канал измерения скорости изменения мощности привода ротора буровой установки, канал измерения скорости изменения частоты вращения вала привода, делитель результатов измерения скорости изменения мощности на скорость изменения частоты вращения вала привода, распознаватель знака градиента изменения крутящего момента на валу привода, регулятор, обеспечивающий изменение частоты вращения вала привода.

Изобретение поясняется чертежом фиг. 1, фиг. 2.

На фиг. 1 представлена схема измерения градиента изменения крутящего момента на валу привода, знака градиента и регулятора, обеспечивающего изменение частоты вращения вала привода по определенному знаку градиента.

На фиг. 2 представлена общая структура системы управления процессом бурения.

На фиг. 1 показано схематичное изображение привода ротора буровой установки 1, включающего в себя непосредственно привод с выходным валом вращения, движитель привода мощностью Р, это может быть электродвигатель, дизель, газотурбинный двигатель и т.д., выходной вал которого вращается с частотой вращения n, причем привод имеет устройство изменения частоты вращения, канал измерения скорости изменения мощности 2, канал измерения скорости изменения частоты вращения вала 3, блок деления 4, с помощью которого определяется gradM, как функции , определитель знака gradM 5 и регулятор 6, обеспечивающий изменение скорости вращения вала привода по определенному знаку градиента.

Определитель знака gradM представляет собой фазочувствительный усилитель, выходной сигнал которого изменяет фазу на выходе в зависимости от знака сигнала gradM; в зависимости от фазы выходного сигнала, регулятор 6, например реверсивный двигатель, воздействует на исполнительные органы, которые в свою очередь изменяют угловую скорость выходного вала привода, который через передаточный механизм подключается к колонне бурильных труб с породоразрушающим инструментом 7.

На фиг. 2 показано схематическое изображение структуры управления процессом бурения, включающей в себя непосредственно привод ротора буровой установки 1, колонну бурильных труб с буровым инструментом 7, канал измерения скорости изменения мощности Р привода 2, канал измерения скорости изменения частоты вращения вала n привода 3, блок деления 4, определитель знака градиента 5, регулятор частоты вращения 6.

Бурильная колонна как объект автоматического управления [4] представляет собой структурно-неустойчивое звено с астатизмом третьего порядка. Для реализации устойчивого процесса бурения требуется коррекция частотных характеристик этого объекта [5], которая может быть реализована различными способами: путем последовательного подключения дифференцирующих звеньев, путем параллельной коррекции, либо путем введения компенсирующей обратной связи. Так как параллельная коррекция и коррекция с использованием обратной связи невозможны вследствие большой длины колонны бурильных труб и сложности использования ствола скважины, то наиболее эффективной является последовательная коррекция. В качестве такого корректирующего дифференциального звена используются дифференцирующие фильтры, введенные в каналы измерения мощности и угловой скорости. Кроме того, введение дифференцирующих фильтров способствует полному устранению статических ошибок измерения и управления, что существенно повышает точность измерения и управления.

В блоке деления 4 производится деление результата измерения на результат измерения , что определяет на выходе блока деления . В зависимости от знака vP или vn gradM может быть больше нуля или меньше нуля, что определяется определителем знака gradM 5, например, фазочувствительным усилителем, фаза выходного напряжения которого определяется знаком gradM. К выходу определителя знака gradM 5 подключен регулятор частоты вращения вала привода 6, например, реверсивный двигатель, направление вращения вала которого определяется фазой выходного напряжения фазочувствительного усилителя, следовательно gradM. Регулятор частоты вращения непосредственно воздействует на исполнительные органы привода 1.

Литература

1. Перминов Б.А. Устройство для измерения крутящего момента на роторе буровой установки. АС СССР №1691690, 1991.

2. Перминов Б.А., Сабов В.В. Устройство для измерения крутящего момента на роторе буровой установки. АС СССР №1695157, 1991.

3. Перминов Б.А., Перминов В.Б. Устройство для измерения крутящего момента на роторе буровой установки. АС СССР №1697157, 1991.

4. Быков И.Ю., Заикин С.Ф., Перминов Б.А. Колонна бурильных труб в процессе углубления скважины как объект автоматического регулирования. // Строительство нефтяных и газовых скважин на суше и на море. - М.: ОАО «ВНИИОЭНГ», 2012. - №10. С. 13-17.

5. Быков И.Ю., Заикин С.Ф., Перминов Б.А. Оптимизация управления процессом углубления скважины. // Строительство нефтяных и газовых скважин на суше и на море. - М.: ОАО «ВНИИОЭНГ», 2012. - №10. С. 17-21.

1. Способ управления процессом бурения, включающий измерение скорости изменения мощности привода ротора буровой установки, измерение скорости изменения частоты вращения вала привода, отличающийся тем, что в канал измерения мощности привода ротора буровой установки и в канал измерения частоты вращения вала привода введены операция дифференцирования и операция деления результатов измерения скорости изменения мощности привода ротора буровой установки на результат измерения скорости изменения частоты вращения вала привода, определяющая градиент изменения крутящего момента на валу привода ротора буровой установки, при этом регулирование частоты вращения вала привода проводится по знаку градиента изменения крутящего момента на валу привода ротора буровой установки.

2. Система управления, осуществляющая способ управления процессом бурения, включает привод ротора буровой установки, колонну бурильных труб с породоразрушающим инструментом, измеритель скорости изменения мощности привода ротора буровой установки, измеритель скорости изменения частоты вращения вала привода, отличающаяся тем, что выходы измерителей скоростей изменения мощности и частоты вращения подключены к входам блока деления, на выходе которого определяется градиент изменения крутящего момента, причем выход блока деления подключен к определителю знака градиента изменения крутящего момента на валу привода, который подключен к регулятору, обеспечивающему изменение частоты вращения вала привода ротора буровой установки.



 

Похожие патенты:

Изобретение относится к горной промышленности и может быть использовано при шарошечном бурении взрывных и разведочных буровых скважин на горных предприятиях. Технический результат заключается в обеспечении эффективности использования долота.

Изобретение относится к разработке, осуществлению и использованию результатов операций интенсификации, выполняемых на буровой. Техническим результатом является получение более точных данных о параметрах интенсификации для буровой.

Изобретение относится к способу для ступенчатой операции интенсификации добычи из скважины. Техническим результатом является повышение интенсификации добычи из скважины.

Изобретение относится к бурению скважин и может найти применение при регулировании условий бурения. Техническим результатом является снижение зависимости режима работы забойного гидродвигателя от забойных условий и тем самым стабилизировать его.

Изобретение относится к области бурения подземных буровых скважин и измерения в них. Техническим результатом является расширение функциональных возможностей и повышение информативности исследований.

Изобретение относится к бурению скважин и может найти применение при регулировании условий бурения. Техническим результатом является оптимизация процесса бурения скважины.

Изобретение относится к измерительной технике и может использоваться для измерения параметров закачиваемой в скважину жидкости. Система включает расходомер электромагнитный, который снабжен контроллером, составляющим основу первого измерительного модуля, плотномер вибрационный, снабженный контроллером, составляющий основу второго измерительного модуля.

Группа изобретений относится к динамическим гасителям крутильных колебаний и может быть использована в бурении нефтяных и газовых скважин. Динамический виброгаситель крутильных колебаний содержит корпус с расположенным внутри него маховиком, в теле которого закреплены грузы, маховик выполнен в виде системы двухзвенника.

Изобретение относится к буровым долотам, включающим датчики для проведения измерений, относящихся к скважинным параметрам, способам изготовления таких буровых долот и буровым системам, использующим такие буровые долота.

Изобретение относится к способу, устройству и машиночитаемому носителю данных, используемых при построении геологической модели нефтяного или иного месторождения.

Изобретение относится к области бурения нефтяных и газовых скважин и может быть использовано для оптимального управления процессом бурения. Техническим результатом является упрощение структуры системы управления, увеличение точности управления, оптимизация систем измерения, снижение вибраций бурильной колонны и как результат увеличение скорости проходки скважины. Способ включает измерение мощности двигателя привода ротора буровой установки, измерение угловой скорости вала привода. При этом результаты измерения мощности двигателя привода и угловой скорости вала привода дифференцируются, а регулирование осевой нагрузки на породоразрушающий инструмент производится по скорости изменения мощности двигателя привода, значение которой определяется дифференцированием результата измерения мощности, при этом регулирование частоты вращения вала привода проводится по скорости изменения угловой скорости вращения вала привода, значение которой определяется дифференцированием результата измерения угловой скорости. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области бурения нефтяных и газовых скважин и может быть использовано для оптимального управления процессом бурения. Техническим результатом является упрощение структуры системы управления, увеличение точности управления, оптимизация систем измерения, снижение вибраций бурильной колонны и как результат увеличение скорости проходки скважины. Способ включает измерение мощности двигателя привода ротора, измерение угловой скорости вращения вала привода. При этом в канал измерения наброса крутящего момента введена операция инвертирования а, регулирование мощности двигателя привода ротора осуществляется по гармоническому закону с частотой, равной частоте изменений наброса крутящего момента, а также тем, что управляющие гармонические колебания сдвинуты по фазе относительно гармонических колебаний наброса крутящего момента на 180°. 2 н.п. ф-лы, 2 ил.

Изобретение относится к способу и устройству мониторинга погружного ударного бурения. Техническим результатом является оптимизации бурения. Способ мониторинга погружного ударного бурения, согласно которому на погружной пневмоударник подают поток рабочей текучей среды для выполнения ударов и промывки и на погружной пневмоударник передают крутящий момент и усилие подачи. Частоту ударов или связанную частоту погружного пневмоударника измеряют и создают отображение разброса частоты для получения ответной реакции на корректировку по меньшей мере одного параметра бурения как изменения ширины (W) разброса. Изобретение также относится к соответствующему устройству. 2 н. и 20 з.п. ф-лы, 12 ил.

Изобретение относится к моделированию и приведению в действие барьеров безопасности. Техническим результатом является повышение безопасности буровой установки. По меньшей мере, некоторые из наглядных вариантов осуществления являются долговременным машиночитаемым носителем данных, содержащим выполняемые команды, которые при выполнении назначают, по меньшей мере, одному процессору задание моделировать, с использованием, по меньшей мере, одной модели, барьеры безопасности в, по меньшей мере, одной буровой установке на основании данных барьеров безопасности буровых установок. Процессорам дополнительно назначается задание идентифицировать, на основании, по меньшей мере, одной модели, первую приближающуюся утрату валидации первого барьера безопасности. Процессорам дополнительно назначается задание инициализировать, с приведением в действие только командами, второй барьер безопасности на основании приближающейся утраты валидации. 3 н. и 17 з.п. ф-лы, 4 ил.

Изобретение относится к горной технике с использованием вибрационных или колебательных средств. Техническим результатом является повышение эффективности производительности бурения различных по физико-механическим свойствам горных пород. Сущность способа заключается в том, что в автоматическом режиме выполняют сравнение действительного и опорного значений суммарной нагрузки на буровой инструмент с использованием прямой положительной и обратной отрицательной связей между силовыми и кинематическими параметрами процесса бурения. Далее по сигналу рассогласования изменяют посредством изменения коэффициентов усиления связей величину подачи и частоту вращения бурового инструмента. Также изменяют частоту и амплитуду наложенных колебаний силовых и кинематических параметров бурового инструмента до значений, соответствующих физико-механическим свойствам породы. Реализуют способ с помощью устройства, которое состоит из гидронасоса постоянной производительности, предохранительно-разгрузочного клапана, фильтра, трехпозиционного гидрораспределителя, регулируемого дросселя в качестве регулятора режимов, гидромотора вращения бурового инструмента, четырехпозиционного гидрораспределителя, двухпозиционного гидрораспределителя, двухлинейного регулятора расхода, регулируемого дросселя в качестве регулятора жесткости гидросистемы, гидроцилиндра подачи, манометров с демпфером и измерителя веса, бака. В устройстве предусмотрены многопозиционные гидрораспределители с соответствующим соединением с элементами устройства для формирования дополнительных потоков и направлений рабочей жидкости, также для обеспечения последовательности технологических состояний способа бурения и технической возможности наладки и безопасного осуществления этой последовательности. 2 н. и 1 з.п. ф-лы, 1 ил.

Изобретение относится к способу и системе калибровки коэффициента трения для операции бурения. Техническим результатом является повышение точности калибровки коэффициента трения. Способ включает калибровку коэффициента трения для операции бурения посредством изображения на устройстве отображения указания предполагаемой нагрузки на крюк в зависимости от глубины для операции бурения, отображения на устройстве отображения множества точек на графике, каждая из которых обозначает измеренную нагрузку на крюк в зависимости от глубины для операции бурения, выбора первой точки на графике из множества точек на графике, которая соответствует первой глубине, при этом выбор осуществляют в ответ на расположение указательного курсора в пределах заданного расстояния от первой точки на графике на устройстве отображения, отображения первого значения коэффициента трения, соотносящего предполагаемую нагрузку на крюк в зависимости от глубины для конкретной глубины с измеренной нагрузкой на крюк в зависимости от глубины для первой точки на графике, причем отображение значения осуществляют в ответ на выбор первой точки на графике, выбора первого значения в ответ на расположение указательного курсора в пределах заданного расстояния от первого значения и затем сдвига на устройстве отображения, по меньшей мере, участка указания предполагаемой нагрузки на крюк в зависимости от глубины на основании первого значения коэффициента трения. 3 н. и 11 з.п. ф-лы, 7 ил.

Группа изобретений относится к средствам управления давлением и потоком при буровых работах. Техническим результатом является повышение точности управления давлением в стволе скважины. Предложен способ управления давлением в скважине, содержащий этапы, на которых получают параметры скважины и передают соответствующую информацию в гидравлическую модель, в которой определяют требуемое заданное значение давления в кольцевом пространстве. При этом требуемое заданное значение давления передают от гидравлической модели в интерфейс сбора данных и управления, контроллер и обучаемое прогнозирующее устройство для использования при прогнозировании будущих значений заданных давлений в кольцевом пространстве. Причем обучаемое прогнозирующее устройство обучают в реальном времени, и оно может прогнозировать текущие значения результатов измерений одного или нескольких датчиков на основе выходных сигналов. В случае если выходной сигнал датчика становится недоступен, прогнозирующее устройство может передавать в устройство проверки достоверности данных недостающие значения, относящиеся к результатам измерения этого датчика, по меньшей мере, в течение некоторого времени, пока выходной сигнал этого датчика снова не станет доступным. Далее способ содержит этапы, на которых передают команды на изменение потока через кольцевое пространство, образованное радиально между бурильной колонной и стволом скважины, и регулируют заданное значение давления в ответ на передачу. Предложена также система для осуществления указанного способа. 3 н. и 18 з.п. ф-лы, 11 ил.

Изобретение относится к способам и системам бурения скважины с автоматическим ответом на детектирование события. Техническим результатом является повышение эффективности бурения. Способ бурения скважины содержит детектирование события бурения путем сравнения сигнатуры параметров, созданной в процессе бурения, с сигнатурой события, сигнализирующей об указанном событии бурения, и автоматическое управление операцией бурения в ответ на, по меньшей мере, частичное совпадение по результатам сравнения указанной сигнатуры параметров с указанной сигнатурой события. Причем при сигнализации о событии резкого увеличения давления выполняется автоматическое переключение между (а) поддержанием требуемого давления в стволе скважины и (b) поддержанием требуемого давления в стояке. Система бурения скважины содержит систему управления, сравнивающую сигнатуру параметров для операции бурения с сигнатурой события, сигнализирующей об указанном событии бурения, и контроллер, автоматически управляющий операцией бурения в ответ на указанное событие бурения, о котором сигнализирует, по меньшей мере, частичное совпадение указанной сигнатуры параметров с указанной сигнатурой события. Причем указанная система управления выполнена с возможностью, при сигнализации о событии резкого увеличения давления, автоматического переключения между (а) поддержанием требуемого давления в стволе скважины и (b) поддержанием требуемого давления в стояке. 2 н. и 68 з.п. ф-лы, 5 ил.

Изобретение относится к области бурения нефтяных и газовых скважин и может быть использовано для оптимизации управления процессом бурения. Техническим результатом является повышение эффективности управления на основе реализации разработанной стратегии бурения, увеличение точности управления, компенсация автоколебаний бурильной колонны и как результат увеличение механической скорости проходки скважины. Технический результат достигается предложенным способом оптимизации процесса бурения, при котором осуществляется регулирование осевой нагрузки и угловой скорости вала привода в зависимости от расчетной стратегии бурения. При этом компенсация автоколебаний бурильной колонны на промежуточных этапах стратегии бурения осуществляется по динамическому приращению крутящего момента. 2 н.п. ф-лы, 1 ил.

Изобретение относится к определению оптимальных параметров для забойной операции. Техническим результатом является повышение эффективности управления забойной операцией. Компьютерно-реализуемый способ управления забойной операцией содержит этапы, на которых принимают в хранилище данных, по существу, непрерывный поток данных реального времени, связанный с текущей забойной операцией, принимают от пользователя выбор забойного параметра, оптимизируют с помощью вычислительной системы выбранный забойный параметр на основании части принятого потока данных для достижения целевого значения выбранного забойного параметра, и используют оптимизированный забойный параметр в текущей операции. Причем текущая забойная операция является первой забойной операцией, и способ дополнительно содержит этап, на котором используют оптимизированный забойный параметр во второй забойной операции, отличной от первой забойной операции. 2 н. и 26 з.п. ф-лы, 9 ил.
Наверх