Способ насыщения пористых заготовок оксидами металлов

Изобретение относится к атомной промышленности и гидрометаллургии и может быть использовано, например, для получения уран-графитовых тепловыделяющих элементов (твэл) или композиционных высокотемпературных материалов методом пропитки пористых материалов (графит, металлы, оксиды металлов и т.п.) растворами солей и последующей термообработки. Способ насыщения пористых заготовок оксидами металлов включает вакуумную обработку заготовок, пропитку их растворами солей металлов, сушку и термообработку. Пропитку осуществляют при температуре 5÷12°C метастабильным раствором соли соответствующего металла с уротропином, а после пропитки пористые заготовки помещают в предварительно нагретую до 80÷95°C инертную среду и выдерживают в течение 0,5÷1,0 час. В качестве инертной среды используют воздух, воду, масло. Технический результат - упрощение процесса введения оксидов металлов, в том числе оксидов урана, в пористую матрицу (заготовку) за счет исключения использования легколетучих и взрывоопасных органических жидкостей (ацетон и изопропиловый спирт), а так же сокращение продолжительности процесса и, соответственно, энергозатрат. 4 з.п. ф-лы, 3 табл., 1 ил.

 

Изобретение относится к атомной промышленности и гидрометаллургии и может быть использовано, например, для получения уран-графитовых тепловыделяющих элементов (твэл) или композиционных высокотемпературных материалов методом пропитки пористых материалов (графит, металлы, оксиды металлов и т.п.) растворами солей и последующей термообработки.

Известен способ получения уран-графитовых изделий (патент США №2 938 839, НКИ 428/613, МПК C25D 13/02, опубл. 31.05.1960), заключающийся в пропитке графита водным раствором нитрата уранила и последующей термообработке. Недостаток известного способа заключается в неравномерности распределения вводимых компонентов.

Известен метод изготовления уран-графитовых блоков для активной зоны гомогенного графитового исследовательского реактора NAA путем пропитывания графитовых блоков раствором двуводного уранилнитрата в третичном бутиловом эфире, быстрого замораживания в жидком азоте и удаления растворителя путем возгонки. Дальнейшая термообработка пропитанных графитовых блоков превращает введенный в графит уранилнитрат в устойчивую окись урана (NAA-SR-238. July 6, 1953). Недостатком этого способа является сложность его аппаратурного и технологического оформления, требующего использования нестандартного оборудования, применение легколетучего и взрывоопасного третичного бутилового эфира и жидкого азота. Кроме того, длительность процесса сушки пропитанных блоков путем вымораживания составляет 40-50 часов.

Наиболее близким по технической сущности к предлагаемому изобретению является способ введения соединения урана в матрицу, заключающийся в вакуумной пропитке пористой графитовой заготовки раствором соли металла и последующей сушке и термообработке (патент РФ №2491666, МПК G21C 21/02, опубл. 27.08.2013). Этот способ введения соединения урана в матрицу заключается в пропитке пористого графитового блока раствором металлоорганического соединения урана. В качестве металлоорганического соединения урана используют ацетилацетонат уранила, а в качестве растворителя используют смесь ацетона с изопропиловым спиртом и водой в соотношении (65÷70):(4÷5):(25÷31). Сушку проводят на воздухе в течение не менее 48 часов. Отжиг блоков проводят при температуре 360÷380°C в течение 1,5 часов.

Основной недостаток известного технического решения - использование легколетучих и взрывоопасных органических жидкостей (ацетон и изопропиловый спирт), а также большая продолжительность и энергоемкость способа изготовления изделий, при котором временные затраты только на процесс сушки составляют не менее 48 часов.

Поставленная задача и достигаемый при использовании изобретения технический результат - упрощение процесса введения оксидов металлов, в том числе оксидов урана, в пористую матрицу (заготовку) за счет исключения использования легколетучих и взрывоопасных органических жидкостей (ацетон и изопропиловый спирт), а так же сокращение продолжительности процесса и, соответственно, энергозатрат.

Поставленная задача достигается тем, что в способе насыщения пористых заготовок оксидами металлов, включающем вакуумную обработку заготовок, пропитку их растворами солей соответствующих металлов, сушку и термообработку, согласно изобретению пропитку пористых заготовок осуществляют при температуре 5÷12°C метастабильным раствором соли соответствующего металла с уротропином, а после пропитки пористые заготовки помещают в предварительно нагретую до 80÷95°C инертную среду и выдерживают в течение 0,5÷4,0 час.

При этом для достижения оптимального результата при насыщении пористых заготовок оксидом урана пропитку осуществляют метастабильным раствором с pH=2,5÷3,9, содержащим:

Соль нитрата уранила 5÷150 г/литр (по металлу)
Уротропин 0,85÷1,30 молей на моль металла

При насыщении пористых заготовок оксидом циркония пропитку осуществляют метастабильным раствором с pH=1,2÷1,9, содержащим:

Соль нитрата цирконила 10÷100 г/литр (по металлу)
Уротропин 0,4÷1,3 молей на моль металла

При насыщении пористых заготовок оксидом алюминия пропитку осуществляют метастабильным раствором с pH=3,7÷4,3, содержащим:

Соль нитрата алюминия 10÷60 г/литр (по металлу)
Уротропин 2,4÷2,8 молей на моль металла

В качестве инертной среды используют воздух, воду, масло и т.п.

Метастабильный раствор готовят при температуре 5÷12°C в два этапа: вначале готовят раствор соли металла необходимой концентрации, а затем добавляют предварительно приготовленный раствор уротропина.

Уротропин добавляют в раствор для осаждения в порах пропитанного изделия водонерастворимых солей аммония (диуранат аммония и т.д.) и оксидов вводимых металлов в процессе так называемой «заварки», которая происходит при 80÷95°C. При помещении пропитанных заготовок в инертную среду, нагретую до 80÷95°C происходит разложение уротропина с образованием аммиака, который вызывает осаждение в порах заготовки водонерастворимых солей (диуранат аммония и проч.). Продолжительность выдержки (0,5÷1,0 час) при проведении операции осаждения оксидов металлов в порах заготовок определяется требованиями полного их прогрева до заданной температуры и полного осаждения вводимых компонентов. Кроме того, полное осаждение водонерастворимых солей и оксидов металлов происходит при pH пропиточного раствора, равном 1,2÷4,3, при этом в этом диапазоне раствор остается устойчивым при 5÷12°C в течение времени, достаточном для проведения пропитки. Так, например, для уранового раствора наиболее полное осаждение происходит при pH свыше 2,5, а при pH раствора более 3,9 время устойчивости метастабильного раствора сокращается и раствор мутнеет за счет преждевременного осаждения вводимых компонентов уже в процессе пропитки или до нее даже при температуре ниже 5°C.

Устойчивость метастабильного раствора урана при концентрации металла в растворе более 150 г/л уменьшается с 2-х-3-х суток до нескольких (2-х-5-и) часов при 5÷12°C.

Технический результат, достигаемый при использовании настоящего изобретения, заключается в следующем:

- упрощение способа введения оксидов металлов, в том числе оксидов урана, в пористую заготовку;

- равномерное распределение делящихся материалов в пористой матрице (±3÷6%);

- сокращение времени проведения технологического цикла;

- исключение применения легколетучих и взрывоопасных органических растворителей.

Равномерность распределения вводимых в пористую заготовку оксидов металла достигается за счет осаждения в порах заготовки перед операцией сушки водонерастворимых солей металлов. При помещении пропитанных заготовок в нейтральную среду, нагретую до 80÷95°C, происходит разложение уротропина с образованием аммиака, который вызывает осаждение в порах заготовки водонерастворимых аммонийных солей, которые при последующей термообработке разлагаются с образованием оксидов металлов.

Пример осуществления способа.

Пористые заготовки графита марки APB 100×100×150 мм и соосным отверстием 30 мм весом около 2-х килограмм и пористостью ~25-26% об. помещали в ванну и закрывали крышкой. Систему вакуумировали до остаточного давления 1*10-1 мм рт. ст. В этих условиях заготовку выдерживали в течение -20 мин. После этого в ванну подавали приготовленный метастабильный пропиточный раствор (750-800 мл). Составы пропиточных растворов, их температура и режимы пропитки приведены таблицах №№1, 2, 3. Пропитку осуществляли в течение 30 мин, после чего блоки помещали в муфель, нагретый до 80÷95°C, и выдерживали в течение 40 мин. Последующую термообработку заготовок, прошедших операцию осаждения аммонийных солей металлов, проводили в муфеле при нагреве до 400°C со скоростью 100°C/час и выдержкой по 1 часу при 95÷100°C и 400°C. Термообработку блоков до 800°C осуществляли в атмосфере аргона в течение 45 мин.

Равномерность распределения оксидов металлов, введенных пропиткой в пористые заготовки, оценивали по результатам измерения образцов (пробе - 1 см3) на рентгенофлюоресцентном анализаторе (RFA) «ARL PEREFORMS 4200».

На чертеже представлена схема отбора проб на равномерность распределения вводимых оксидов металлов по объему заготовки.

Полой фрезой высверливали стержни, каждый из которых разрезали на три части. Содержание оксидов по объему заготовок анализировали в 15 точках. Результаты этой оценки приведены в таблицах №№1, 2, 3. Анализ блоков на равномерность распределения урана показал, что отклонение содержания урана в изделиях от среднего содержания по блоку не превышало +/-6%.

Результаты испытаний способа приведены в таблицах №№1, 2, 3.

Применение метастабильного раствора нитрата уранила

Примечание: MUГМТА, МА1ГМТА, MZrГМТА - мольное отношение в растворах соответственно урана, алюминия и циркония к уротропину (гмта).

Таким образом, предлагаемый способ позволяет существенно упростить процесс введения оксидов металлов в пористую матрицу, отказавшись от применения легколетучих и взрывоопасных органических растворителей, а также сократить продолжительность процесса с нескольких десятков (50) до нескольких (8-10) часов. Этот способ позволяет получать изделия с улучшенной равномерностью распределения вводимых компонентов (+/-3÷6) отн. %) при использовании стандартного оборудования (муфели, печи и т.п.).

1. Способ насыщения пористых заготовок оксидами металлов, включающий вакуумную обработку заготовок, пропитку их растворами солей соответствующих металлов, сушку и термообработку, отличающийся тем, что пропитку пористых заготовок осуществляют при температуре 5÷12°C метастабильным раствором соли соответствующего металла с уротропином, а после пропитки пористые заготовки помещают в предварительно нагретую до 80÷95°C инертную среду и выдерживают в течение 0,5÷1,0 час.

2. Способ по п. 1, отличающийся тем, что при насыщении пористых заготовок оксидом урана пропитку осуществляют метастабильным раствором с pH=2,5÷3,9, содержащим:

Соль нитрата уранила 5÷150 г/литр (по металлу)
Уротропин 0,85÷1,30 молей на моль металла

3. Способ по п. 1, отличающийся тем, что при насыщении пористых заготовок оксидом циркония пропитку осуществляют метастабильным раствором с pH=1,2÷1,9, содержащим:

Соль нитрата цирконила 10÷100 г/литр (по металлу)
Уротропин 0,4÷1,3 молей на моль металла

4. Способ по п. 1, отличающийся тем, что при насыщении пористых заготовок оксидом алюминия пропитку осуществляют метастабильным раствором с pH=3,7-4,3, содержащим:

Соль нитрата алюминия 10-60 г/литр (по металлу)
Уротропин 2,4-2,8 молей на моль металла

5. Способ по п. 1, отличающийся тем, что в качестве инертной среды используют воздух, воду, масло.



 

Похожие патенты:

Устройство относится к изготовлению тепловыделяющих элементов (твэлов) ядерного реактора. Устройство снаряжения фольгой оболочки твэла содержит валики, ложемент, штангу с цилиндром, губки и узел формирования отбортовки на фольге.

Изобретение относится к технологии изготовления тепловыделяющих элементов для высокотемпературных ядерных реакторов. Способ включает изготовление матрицы на основе пластин(2) из углеродных материалов, в которых выполнены посадочные места с заложенными в них микротвэлами (1) с защитными покрытиями.

Изобретение относится к изготовлению тепловыделяющих сборок ядерного реактора (ТВС), в частности к дистанционированию тепловыделяющих элементов (твэлов). Способ дистанционирования твэлов в рабочей сборке ядерного реактора включает следующие операции: проволоку различного поперечного сечения навивают в спираль виток к витку, растягивают до требуемого диаметра, отжигают, рассекают на отрезки штатной длины, а отрезки спирали размещают между смежными твэлами внешнего и внутренних рядов рабочей сборки.

Изобретение относится к ядерной энергетике, в частности к способам изготовления газонаполненных тепловыделяющих элементов (твэлов) с топливными сердечниками из нитрида или карбонитрида урана.
Изобретение относится к способам прессования заготовок керметных стержней тепловыделяющих элементов ядерных реакторов. Заготовки, заплавленные силикатом натрия в цилиндрическом контейнере, выполненном из стали с содержанием углерода (0,1-0,35) мас.%, после образования на поверхности контейнера слоя окалины подвергаются изостатическому прессованию.
Изобретение относится к технологиям изготовления топливных стержней, предназначенных для снаряжения сердечников керметных тепловыделяющих элементов ядерных реакторов.
Изобретение относится к области ядерной энергетики и может быть использовано в технологии производства спеченных керамических топливных таблеток с выгорающим поглотителем для ядерных реакторов.

Контейнер предназначен для размещения в нем заготовок стержней сердечников твэлов при горячем изостатическом прессовании и может быть использован при изготовлении твэлов ядерных реакторов различного назначения.

Изобретение относится к области атомной техники и может быть использовано при изготовления топливного материала для тепловыделяющих элементов (твэлов) исследовательских ядерных реакторов.

Изобретение относится к производству тепловыделяющих твэлов ядерного реактора. .

Изобретение относится к изготовлению тепловыделяющих элементов (твэлов) ядерного реактора. Изготовление твэла ядерного реактора осуществляют в два этапа. На первом - снаряжают заготовку оболочки твэла контактным материалом, таблетками делящегося материала, пружиной, сжатой хвостовиком, сваривают, вакуумируют, герметизируют, нагревают до температуры плавления контактного материала, охлаждают. На втором - через переходник дополняют отражателем и газосборником. В качестве контактного материала применяют: магний, натрий, свинец, медь-магний, свинец-висмут, алюминий-кремний-никель. Технический результат - повышение теплопроводности между внутренней поверхностью оболочки твэла и столбом таблеток делящегося материала. 3 з.п. ф-лы, 1 ил.

Изобретение относится к ядерной технике, в частности к сборке стержневых тепловыделяющих элементов (твэлов), и может быть использовано в ядерных реакторах разного типа. Пружинный фиксатор топливного столба, располагаемый в компенсационном объеме твэла, имеет последовательно расположенные от торца топливного столба компенсирующую, буферную и фиксирующую группы витков. Фиксатор устанавливается в оболочку твэла цилиндрическим трехступенчатым штоком, имеющим длину ступени наименьшего диаметра, обеспечивающую требуемое усилие поджатия топливного столба, а общую длину ступеней с наименьшим и средним диаметрами менее длины компенсационного объема на 1,5…2,0 диаметра твэла. Перемещение штока продолжается до упора компенсирующей части фиксатора в топливный столб и сжатия ее до момента касания штоком торца топливного столба. Далее шток извлекается из твэла, а открытый торец оболочки герметизируется с помощью заглушки. Технический результат - уменьшение разброса и длины пружинного фиксатора топливного столба после установки, что обеспечивает возможность увеличения загрузки топлива в твэл, повышения его энерговыработки. 8 ил.

Изобретение относится к ядерному топливу. Ядерное топливо содержит объем ядерного топливного материала, ограниченный поверхностью. Ядерный топливный материал содержит несколько зерен, некоторые из которых имеют характеристическую длину вдоль по меньшей мере одного измерения, меньшую или равную выбранной длине. Выбранная длина подходит в некоторых из зерен для поддержания надлежащей диффузии продукта ядерного деления из внутреннего объема зерна к по меньшей мере одной границе зерна; при этом ядерный топливный материал содержит пограничную сеть, выполненную с возможностью переноса продукта ядерного деления от по меньшей мере одной границы зерна некоторых из зерна к поверхности объема ядерного топливного материала. Технический результат - повышение эффективности удаления продуктов распада из ядерного топлива. 9 н. и 250 з.п. ф-лы, 199 ил.

Изобретение относится к области ядерной энергии, в частности к производству микротвэлов. Последовательно осаждают на топливную микросферу пиролизом смеси газов в кипящем слое низкоплотный, высокоплотный, слой карбида кремния и наружный высокоплотный слои покрытий. Низкоплотный слой карбида кремния осаждают из смеси метилсилана и аргона при концентрации метилсилана 5-15 об.%, высокоплотный слой карбида кремния осаждают из смеси метилсилана и аргона при концентрации метилсилана не более 10 об.%, слой карбида кремния осаждают из смеси метилсилана и аргона при концентрации метилсилана не более 5 об.%, наружный высокоплотный слой карбида кремния осаждают из смеси метилтрихлорсилана и водорода при концентрации метилтрихлорсилана 1,2-1,5 об.%. Технический результат - упрощение способа производства микротвэлов ядерного реактора, увеличение срока службы топливных микросфер, а также расширение их области применения для реакторов на быстрых нейтронах. 4 з.п. ф-лы, 1 табл., 5 ил.

Изобретение относится к атомной энергетике и может найти применение при изготовлении тепловыделяющих элементов (твэлов) для атомных реакторов. Способ герметизации твэлов включает аргонодуговую сварку оболочки с заглушкой из высокохромистой стали, снаряжение твэла топливом, приварку к другому концу оболочки второй заглушки, термообработку сварных соединений. В зоне сварного соединения формируют металл шва, состоящий из ферритной фазы, стойкой против образования трещин и не требующей последующей термообработки сварных соединений. При этом для формирования ферритной фазы выбирают отношение: объем материала ферритного класса к объему материала ферритно-мартенситного класса ≥ 0,18. Выбраны режимы сварки, позволяющие получать требуемый фазовый состав при формировании металла шва. Технический результат - необходимое качество сварных соединений, упрощение технологического процесса изготовления твэлов. 2 з.п. ф-лы, 1 ил., 2 табл.

Изобретение относится к производству микротвэлов ядерного реактора. Способ изготовления микротвэлов включает последовательное осаждение на топливные микросферы пиролизом смеси газов в кипящем слое защитных слоев покрытия. Слой низкоплотного пироуглерода осаждают пиролизом смеси ацетилена и аргона, промежуточный и наружный слои высокоплотного изотропного пироуглерода осаждают пиролизом смеси газов, состоящей из 26,0 об.% ацетилена, 22,0 об.% пропилена и 52,0 об.% аргона, а силовой слой карбида кремния осаждают на промежуточный слой высокоплотного изотропного пироуглерода. При этом предварительно на топливные микросферы осаждают слой карбида кремния, являющийся геттером кислорода, пиролизом смеси из 96 об.% аргона и 4 об.% метилсилана, слой низкоплотного пироуглерода осаждают пиролизом ацетилена с концентрацией 55-65 об.% в смеси с аргоном, а силовой слой карбида кремния осаждают из смеси газов: 8,5-9,5 об.% метилтрихлорсилана, 0,5 об.% пропилена, остальное 90-91 об.% - водород. Технический результат - сокращение продолжительности процесса и расхода газов на проведение пиролиза, увеличение срока службы топливных микросфер. 2 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к атомной энергетике и может быть использовано при изготовлении тепловыделяющих элементов. На трубчатой оболочке выполняют первый кольцевой гофр, вводят в оболочку нижний отражатель, фиксируют его вторым кольцевым гофром, оснащают трубчатую оболочку таблетками делящегося материала, с учетом КТР столба таблеток, наносят третий кольцевой гофр, устанавливают верхнюю концевую деталь, совмещенную с отражателем, и производят аргонно-дуговую сварку с трубчатой оболочкой, вакуумируют, заполняют гелием компенсационный объем, устанавливают нижнюю концевую деталь и производят аргонно-дуговую сварку кольцевого шва. Заключительной операцией на готовый твэл наносят продольные гофры на участке между вторым и третьим кольцевыми гофрами. Изобретение позволяет упростить выполняемые операции. 2 з.п. ф-лы, 2 ил.
Наверх