Способ оценки дальности и скорости удаленного объекта
Владельцы патента RU 2563608:
Открытое акционерное общество "Научно-исследовательский институт "Полюс" им. М.Ф. Стельмаха" (RU)
Способ определения дальности и скорости удаленного объекта заключается в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты и статистической обработке зарегистрированных данных. При этом производят первую серию зондирований способом некогерентного накопления и определяют дальность R до объекта, после чего, если измеренная дальность R превышает заданную величину Rmin, то продолжают проводить измерения в указанном режиме некогерентного накопления, а если R не превышает Rmin, то включают моноимпульсный режим измерения дальности и скорости. Технический результат изобретения заключается в обеспечении измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и при взлете и посадке в широком диапазоне высот и режимов подъема и снижения. 2 з.п. ф-лы, 1 ил., 1 табл.
Предлагаемое изобретение относится к измерительной технике и может быть использовано в любой области, где необходимо определить скорость движущегося объекта и расстояние до него, в частности, для контроля рельефа подстилающей поверхности и управления режимом посадки летательного аппарата.
Известен способ определения дальности до удаленного объекта путем зондирования его лазерным импульсом, приема отраженного объектом импульса излучения и определения временного интервала между моментами излучения зондирующего импульса и приема отраженного объектом импульса, по которому судят о дальности до объекта [1].
Недостатком этого способа является невозможность измерения скорости цели.
Наиболее близким по технической сущности к предлагаемому способу является способ определения дальности и/или скорости удаленного объекта [2], заключающийся в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты, разделяющим время на нумерованные тактовые интервалы, отсчитываемые от момента излучения зондирующего импульса и образующие тем самым ячейки дальности, и статистической обработке зарегистрированных данных. Согласно указанному способу производят многократное зондирование объекта путем посылки на него серии n лазерных импульсов и определения в каждом i-м зондировании временного интервала ti между моментами излучения лазерного импульса и приема отраженного объектом излучения, при каждом зондировании определяют и регистрируют значения моментов текущего времени Ti, в которые производят посылки лазерных импульсов, и измеренных интервалов ti в серии n зондирований и определяют скорость объекта по формуле:
,
где
V - скорость объекта;
Ri=c·ti/2 результат измерения дальности до объекта в i-м зондировании;
c - скорость света,
задают момент времени T, к которому должен быть привязан отсчет дальности, и определяют значение дальности до объекта в этот момент по формуле:
R=R0+V(T-T1),
где R - результат определения дальности до объекта в момент времени T;
Указанная процедура реализуема только на малых и средних высотах полета летательного аппарата, поскольку требует достоверности измерений при каждом зондировании объекта. Портативные измерители дальности и скорости не обладают достаточным энергетическим потенциалом для проведения таких измерений на больших высотах. При большой дальности до объекта величина принимаемого сигнала становится соизмеримой с амплитудой шумов и прием каждого отраженного импульса с заданной вероятностью становится невозможным. В этом случае измерение скорости по указанному алгоритму приводит к недостоверным результатам.
Задачей изобретения является обеспечение измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и при взлете и посадке в широком диапазоне высот и режимов подъема и снижения.
Указанная задача решается за счет того, что в известном способе определения дальности и/или скорости удаленного объекта, заключающемся в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты, разделяющим время на нумерованные тактовые интервалы, отсчитываемые от момента излучения зондирующего импульса и образующие тем самым ячейки дальности, и статистической обработке зарегистрированных данных, производят первую серию зондирований способом некогерентного накопления, а именно накапливают выборки принятых реализаций отраженного сигнала в каждой ячейке дальности до тех пор, пока накопленная величина не превысит пороговое значение, затем по заранее установленному критерию, например по максимуму коэффициента корреляции накопленного массива принятых реализаций с массивом предварительно оцифрованного зондирующего импульса, определяют порядковый номер p ячейки дальности, к которой относится отраженный сигнал, и определяют дальность R до объекта по формуле R=cpΔt/2, где c - скорость света; Δt - длительность тактового интервала, после чего, если измеренная дальность R превышает заданную величину Rmin, то продолжают проводить измерения в указанном режиме некогерентного накопления, а если R не превышает Rmin, то включают моноимпульсный режим измерения дальности и скорости, в процессе которого производят серию зондирований объекта не менее двух раз, при каждом i-м зондировании определяют время его приема ti, вычисляют дальность до объекта Ri=cti/2, где c - скорость света, и определяют дальность до объекта и его относительную скорость путем линейной интерполяции результатов измерений в виде R(t)=Vt+R0, где R(t) - текущая дальность до объекта; t - текущее время; V - оценка скорости; R0 - оценка дальности до объекта, соответствующая t=0, при этом высоту Rmin при определении высоты летательного аппарата в процессе его посадки выбирают из условия
h2+Ltgθ+hг<Rmin<RD,
где h2 - высота конечной точки глиссады;
L - протяженность глиссады вдоль посадочной полосы;
θ - угол наклона глиссады;
hг - вертикальное расстояние между высотомером и глиссадой;
RD - максимальная высота, на которой вероятность достоверного измерения D в моноимпульсном режиме измерений удовлетворяет заданным требованиям.
Коэффициент корреляции можно определять по формуле , где j - порядковый номер ячейки дальности; Pmax - максимальное число ячеек дальности, соответствующее диапазону измерения дальности; {S0j} - массив выборочных значений зондирующего импульса; {Sj} - массив накопленных значений принятых реализаций; p - текущее количество шагов при пошаговом сдвиге {Sj}.
Оценки дальности до объекта R0 в начальный момент измерения T1 и скорости объекта V можно формировать по формулам:
,
,
где R0 - оценка дальности до объекта в момент времени T1;
V - оценка скорости объекта;
Ri=c·ti/2 - результат измерения дальности до объекта в i-м зондировании;
Ti - моменты времени, в которые произведены замеры дальности Ri;
c - скорость света;
m - количество замеров дальности в серии;
ti - задержка между моментами излучения лазерного импульса и приема отраженного объектом излучения в i-м зондировании.
На фиг. 1 представлена схема посадки летательного аппарата по самолетному с аэрофинишером [4].
При посадке ЛА по-самолетному с аэрофинишером справедливы следующие соотношения
Rmin=h2+Ltgθ+hг,
где Rmin - высота ЛА над посадочной полосой в начале посадочной траектории;
h2 - высота троса аэрофинишера над посадочной полосой;
L - протяженность посадочного участка;
θ - угол наклона глиссады;
hг - длина поводка с гаком.
Например, при h2=2 м; L=200 м; θ=10°; hг=2 м минимальная измеряемая высота Rmin ~ 40 м.
Характеристики дальномера-высотомера, реализующего предлагаемый способ, а также условий проведения измерений приведены в таблице.
Характеристики дальномера-высотомера | Требование |
Габариты цели, м | >5×5 |
Коэффициент яркости цели, ρ | 0,2 |
Метеорологическая дальность видимости W, км | >10 |
Вероятность достоверного измерения дальности | 0,9 |
Рабочая длина волны λ, нм | 900 |
Реальная чувствительность приемного тракта Emin, фДж | 0,3 |
Мощность лазерного излучения на выходе дальномера P0, Вт | 30 |
Длительность импульса лазерного излучения tи, нс | 100 |
Частота лазерных излучений F, 1/с | 8000 |
Расходимость зондирующего пучка излучения ψ, мрад | <5 |
Коэффициент пропускания объектива приемного канала дальномера, τ0 | 0,9 |
Диаметр объектива приемного канала Dпр, мм | 18 |
Частота обновления информации при высоте >200 м, 1/с | 10 |
Частота обновления информации при высоте <200 м, 1/с | 50 |
Заданная дальность действия 40 м обеспечивается при соблюдении неравенства, определяемого уравнением лазерной локации [1] при условии согласования полей излучателя и приемника:
,
где Emin - минимальная принимаемая с заданной вероятностью энергия сигнала, обеспечиваемая чувствительностью фотоприемного устройства (реальная чувствительность);
Eпр - энергия сигнала, поступающего на рабочую площадку чувствительного элемента ФПУ;
Eo=P0 tи - энергия зондирующего сигнала;
P0 - мощность зондирующего сигнала;
tи - длительность зондирующего сигнала;
- коэффициент энергетического перекрытия зондирующего пучка целью (коэффициент использования излучения); при зондировании подстилающей поверхности с малых высот K=ρ;
ρ(x, y) - пространственное распределение коэффициента яркости цели;
Ψ(x, y) - диаграмма направленности выходного зондирующего пучка;
ρ - средний коэффициент яркости цели;
Dпр - диаметр приемного объектива;
- коэффициент пропускания атмосферы на трассе;
µ - показатель ослабления;
τo - коэффициент пропускания оптики приемного канала дальномера;
R - дальность до цели.
На малых высотах при W>10 км пропускание атмосферы τа=1.
При указанных выше исходных данных и высоте Rmin=200 м величина поступающего на приемник сигнала Eпр=1,1 фДж с большим запасом превышает Emin=0,3 фДж, значит измерения высоты могут производиться с высокой достоверностью.
В соответствии с приведенным уравнением лазерной локации высота RD, на которой Eпр=Emin, для приведенных условий составляет
RD=Rmin[Eпр(Rmin)/Emin]½=200·(1,1/0,3)½=383 м.
Данный способ позволяет:
- Увеличить измеряемую высоту летательного аппарата до 1000-2000 м.
- Уменьшить минимальную измеряемую высоту до 2 м.
- Обеспечить минимальный период обновления информации порядка 1 с на больших высотах и до 0,1 с - на малых.
- Обеспечить минимальную ошибку измерения скорости 0,01-0,1 м/с в зависимости от длительности серии зондирований и количества замеров в серии.
- Интерполировать результаты к любому моменту периода измерений или экстраполировать их на заданное время вперед.
Эти выводы подтверждены испытаниями макетных образцов высотомера-скоростемера [5, 6]. Тем самым, подтверждено решение поставленной задачи - обеспечение измерений с борта летательного аппарата его высоты и вертикальной составляющей скорости как в стационарном полете, так и при взлете и посадке в широком диапазоне высот и режимов подъема и снижения.
Источники информации
1. В.А. Смирнов «Введение в оптическую радиоэлектронику». Изд. «Советское радио», Москва, 1973 г., С. 189.
2. Способ определения дальности и/или скорости удаленного объекта. Патент РФ №2378705 - прототип.
3. Способ некогерентного накопления светолокационных сигналов. Патент РФ №2455615.
4. Способ посадки беспилотного самолета на аэрофинишер. Патент РФ №2399560.
5. Малогабаритный лазерный высотомер ДЛ-5М. Фотоника №3, 2013 г., с. 55.
6. В.Г. Вильнер, В.Г. Волобуев, А.А. Казаков, Б.К. Рябокуль Пути достижения предельной точности лазерного скоростемера. «Мир измерений» №7, 2010 г.
1. Способ определения дальности и скорости удаленного объекта, заключающийся в многократном зондировании объекта импульсами лазерного излучения, приеме и регистрации отраженного объектом сигнала с его привязкой к импульсам стабильной тактовой частоты, разделяющим время на нумерованные тактовые интервалы, отсчитываемые от момента излучения зондирующего импульса и образующие тем самым ячейки дальности, и статистической обработке зарегистрированных данных, отличающийся тем, что производят первую серию зондирований способом некогерентного накопления, а именно накапливают выборки принятых реализаций отраженного сигнала в каждой ячейке дальности до тех пор, пока накопленная величина не превысит пороговое значение, затем по максимуму коэффициента корреляции накопленного массива принятых реализаций с массивом предварительно оцифрованного зондирующего импульса определяют порядковый номер p ячейки дальности, к которой относится отраженный сигнал, и определяют дальность R до объекта по формуле R=cpΔt/2, где c - скорость света; Δt - длительность тактового интервала, после чего, если измеренная дальность R превышает заданную величину Rmin, то продолжают проводить измерения в указанном режиме некогерентного накопления, а если R не превышает Rmin, то включают моноимпульсный режим измерения дальности и скорости, в процессе которого производят серию зондирований объекта не менее двух раз, при каждом i-м зондировании определяют время его приема ti, вычисляют дальность до объекта Ri=cti/2, где c - скорость света, и определяют дальность до объекта и его относительную скорость путем линейной интерполяции результатов измерений в виде R(t)=Vt+R0, где R(t) - текущая дальность до объекта; t - текущее время; V - оценка скорости; R0 - оценка дальности до объекта, соответствующая t=0, при этом высоту Rmin при определении высоты летательного аппарата в процессе его посадки выбирают из условия
,
где h2 - высота конечной точки глиссады;
L - протяженность глиссады вдоль посадочной полосы;
θ - угол наклона глиссады;
hr - вертикальное расстояние между высотомером и глиссадой;
RD - максимальная высота, на которой вероятность достоверного измерения D в моноимпульсном режиме измерений удовлетворяет заданным требованиям.
2. Способ по п. 1, отличающийся тем, что коэффициент корреляции определяют по формуле, где j - порядковый номер ячейки дальности; Pmax - максимальное число ячеек дальности, соответствующее диапазону измерения дальности; {S0j} - массив выборочных значений зондирующего импульса; {Sj} - массив накопленных значений принятых реализаций; р - текущее количество шагов при пошаговом сдвиге {Sj}.
3. Способ по п. 1, отличающийся тем, что оценки дальности до объекта R0 в начальный момент измерения T1 и скорости объекта V формируют по формулам
,
,
где R0 - оценка дальности до объекта в момент времени T1;
V - оценка скорости объекта;
Ri=c·ti/2 - результат измерения дальности до объекта в i-м зондировании;
Ti - моменты времени, в которые произведены замеры дальности Ri;
c - скорость света;
m - количество замеров дальности в серии;
ti - задержка между моментами излучения лазерного импульса и приема отраженного объектом излучения в i-м зондировании.