Ударный узел

Узел предназначен для создания импульсного режима движения жидкости. Узел содержит корпус с двумя входными и выходным отверстиями, входные отверстия расположены оппозитно и выполнены соосно вдоль центрирующего штока, установленного в цилиндрическом корпусе с жестко закрепленными на его торцах ударными клапанами, расположенными над входными отверстиями, при этом центрирующий шток выполнен с тремя степенями свободы относительно корпуса, а в конструкцию дополнительно введены две направляющие втулки с седлом под ударный клапан, два стопорных кольца, две возвратные пружины и две конические пружины, причем каждый ударный клапан вставлен в направляющую втулку с седлом, установленным со стороны входных отверстий корпуса, закреплен с торца центрирующего штока и расположен между возвратной пружиной, закрепленной в направляющей втулке при помощи стопорного кольца, и конической пружиной, установленной во входном отверстии корпуса. Технический результат - надежность и устойчивость его работы. 1 ил.

 

Изобретение относится к области гидродинамики, гидравлики и машиностроения, где может найти применение в устройства различного назначения, использующих эффект гидравлического удара, а также к теплоснабжению, где может быть использовано для создания импульсного режима движения жидкости применительно к интенсификации теплообмена в теплоэнергетических установках.

Известен ударный узел для газогидравлического устройства, включающий клапан, расположенный в цилиндрическом корпусе, клапан выполнен в виде шара и расположен в цилиндрическом корпусе между конусообразным седлом и перфорированным ограничителем хода, ввернутым в цилиндрический корпус при помощи резьбового соединения своей конусной поверхностью (RU №86841, МПК А01G 25/00, опубл. 20.09.2009 г.).

Среди недостатков данной конструкции следует отметить относительно узкий рабочий диапазон генерации импульсов количества движения рабочей среды при изменении ее параметров.

Известен ударный узел, включающий корпус, состоящий из двух частей, в каждой из которых выполнены входное и выходное отверстия, центрирующий шток, вставленный во втулки, закрепленные в каждой части, на концах которого закреплены ударные клапаны, входящие каждый во входные отверстия, расположенные на одной из сторон каждой части, на противоположных сторонах которых жестко закреплены постоянные магниты, между которыми расположен диск, состоящий из двух частей, жестко закрепленных в центральной части центрирующего штока и плотно прижимающих расположенную между ними эластичную мембрану, зажатую по краям между двух частей с возможностью осевого хода свободной части эластичной мембраны, диск выполнен из магнитного материала (RU №2484380, МПК F24D 3/02, опубл. 10.06.2013 г.).

Среди недостатков данной конструкции следует отметить ее относительно низкую устойчивость работы при малых расходах рабочей среды из-за местных гидравлических потерь в рабочих элементах, а также относительную сложность конструкции.

Наиболее близким техническим решением по совокупности существенных признаков является ударный узел, включающий цилиндрический корпус с двумя входными и выходным отверстиями, входные отверстия расположены оппозитно и выполнены соосно вдоль центрирующего штока, установленного в цилиндрическом корпусе на втулках с жестко закрепленными на его торцах ударными клапанами, расположенным над входными отверстиями, в одно из входных отверстий ввернуто подвижное седло, связанное червячной передачей с регулировочным винтом. (RU №114129, МПК F24D 3/02, опубл. 0.03.2012 г.). Названная конструкция выбрана за прототип.

Недостатком известной конструкции ударного узла является нарушение фаз четкого попеременного открытия ударных клапанов при работе устройства, сбои в работе при изменении параметров подачи через него рабочей среды, а также относительно низкая устойчивость при малых расхода рабочей среды из-за присутствующего трения штока ударных клапанов о корпус.

Технической задачей изобретения является повышение эффективности и надежности работы ударного узла при обеспечении качественной генерации импульсов количества движения рабочей среды в широком диапазоне изменения ее расходов.

Технический результат достигается за счет того, что в ударном узле, содержащем корпус с двумя входными и выходным отверстиями, входные отверстия расположены оппозитно и выполнены соосно вдоль центрирующего штока, установленного с тремя степенями свободы в цилиндрическом корпусе с жестко закрепленными на его торцах ударными клапанами, расположенными над входными отверстиями.

В конструкцию дополнительно введены две направляющие втулки с седлом под ударный клапан, два стопорных кольца, две возвратные пружины и две конические пружины, каждый ударный клапан вставлен в направляющую втулку с седлом, установленным со стороны входных отверстий корпуса, закреплен с торца центрирующего штока и расположен между возвратной пружиной, закрепленной в направляющей втулке при помощи стопорного кольца, и конической пружиной, установленной во входном отверстии корпуса.

Предлагаемый вариант конструкции ударного узла представлен на чертеже. Ударный узел включает в себя корпус 1 с двумя входными 2 и выходным 3 отверстиями, центрирующий шток 4 с жестко закрепленными на его торцах ударными клапанами 5, две направляющие втулки 6 с седлом 7, два стопорных кольца 8, две возвратные пружины 9 и две конические пружины 10.

Ударный узел работает следующим образом. Предварительно осуществляют настройку ударного узла, которая заключается в подборе жесткости возвратных 9 и конических 10 пружин таким образом, чтобы обеспечивалась разная высота подъема ударных клапанов 5 относительно седел 7. Для этой цели возвратные пружины 9 закрепляются в направляющих втулках 6 посредством стопорных колец 8, обеспечивающих доступ к указанным настройкам. Затем каналы входа 2 и канал выхода 3 корпуса 1, гидравлически связываются с источником подачи рабочей среды и ее приемником (на чертеже не указаны). В этом случае, рабочая среда попадает в каналы входа 2 последовательно через направляющие втулки 6 с седлом 7, минуя, при этом, ударные клапаны 5, жестко закрепленные на центрирующем штоке 4 и установленные между возвратными пружинами 9 и коническими пружинами 10, после чего покидает корпус 1 через выходное отверстие 3. Поскольку изначально настройкой между входными 2 и выходным 3 отверстиями корпуса 1 была обеспечена разность гидравлических напоров, то в канале входа 2 с большим гидравлическим сопротивлением произойдет смещение ударного клапана 5 на закрытие, а второй ударный клапан 5 в соответствующем канале входа 2, посредством центрирующего штока 4, обеспечит его полное открытие. В результате закрытия одного канала входа 2 рабочей среды ударным клапаном 5 в соответствующей направляющей втулке 6 возникнет гидравлический удар, энергия которого используется в зависимости от области применения ударного узла. Затем, рабочая среда будет поступать в канал выхода 3 корпуса 1 ударного узла через другой, открытый, канал входа 2 и, при достаточной (установившейся) скорости истечения, увлечет за собой ударный клапан 5 на закрытие, а в соответствующей направляющей втулке 6 возникнет искомый гидравлический удар. Затем процесс генерации импульсов количества движения рабочей среды в направляющих втулках 6 будет происходить автоматически попеременно до тех пор, пока будет присутствовать подача рабочей жидкости через конструкцию ударного узла.

В результате использования данной конструкции ударного узла обеспечивается относительно высокая надежность и устойчивость его работы при качественной генерации импульсов количества движения рабочей среды в широком диапазоне изменения ее параметров, реализуется механизм автоматической подстройки попеременного открытия и закрытия ударных клапанов за счет податливости пружин и полностью исключаются затраты на трение, благодаря чему ресурс использования устройства многократно увеличивается.

Ударный узел, включающий корпус с двумя входными и выходным отверстиями, входные отверстия расположены оппозитно и выполнены соосно вдоль центрирующего штока, установленного в цилиндрическом корпусе с жестко закрепленными на его торцах ударными клапанами, расположенными над входными отверстиями, отличающийся тем, что центрирующий шток выполнен с тремя степенями свободы относительно корпуса, а в конструкцию дополнительно введены две направляющие втулки с седлом под ударный клапан, два стопорных кольца, две возвратные пружины и две конические пружины, причем каждый ударный клапан вставлен в направляющую втулку с седлом, установленным со стороны входных отверстий корпуса, закреплен с торца центрирующего штока и расположен между возвратной пружиной, закрепленной в направляющей втулке при помощи стопорного кольца, и конической пружиной, установленной во входном отверстии корпуса.



 

Похожие патенты:

Изобретения относятся к технологии гидравлических испытаний электрогидромеханических систем и могут быть использованы для дегазации рабочей жидкости в технических устройствах, использующих в своих конструктивных решениях проточные гидробаки открытого типа.

Группа изобретений относится к нефтедобывающей промышленности и предназначена для повышения нефтеотдачи продуктивных пластов. Способ возбуждения волнового поля на забое нагнетательной скважины заключается в том, что плоскую стесненную струю жидкости подают непрерывно из щелевого сопла на носик клина.

Изобретение относится к области гидрогазодинамики и может быть использовано в устройствах, использующих в своей работе явление гидравлического удара, а также для интенсификации теплообмена в теплоэнергетических установках.

Изобретение относится к нефтедобывающей промышленности и предназначено для повышения нефтеотдачи продуктивных пластов. Способ генерирования волнового поля на забое нагнетательной скважины с автоматической настройкой постоянной частоты генерации заключается в формировании колебаний давления в потоке жидкости, закачиваемой в продуктивный пласт по насосно-компрессорной трубе (НКТ) путем ее прокачивания через струйный резонатор Гельмгольца (СРГ).

Группа изобретений относится к нефтедобывающей промышленности и предназначена для повышения нефтеотдачи продуктивных пластов. Способ генерирования волнового поля на забое нагнетательной скважины с автоматической настройкой резонансного режима генерации заключается в формировании колебаний давления в потоке жидкости, закачиваемой в продуктивный пласт по насосно-компрессорным трубам (НКТ), путем ее прокачивания через струйный резонатор Гельмгольца (СРГ).

Группа изобретений относится к нефтедобывающей промышленности и предназначено для повышения нефтеотдачи продуктивных пластов. Представлен способ генерирования волнового поля на забое нагнетающей скважины и настройки струйного резонатора Гельмгольца на поддержание постоянной частоты колебаний давления в потоке жидкости, нагнетаемой в пласт, при изменении пластового давления.

Изобретение относится к технологиям приготовления эмульсий и суспензий на основе многокомпонентных смесей разнородных по своей природе веществ, в частности минерального и растительного происхождения, для использования в качестве топлив смесевого типа, а также в других областях, где требуются гомогенные композиции различных материалов текучей консистенции.

Пульсатор // 2533600
Изобретение относится к области энергетического машиностроения, в частности к методам промывки контурных систем атомных паропроизводящих установок. Пульсатор содержит корпус с герметичными камерами пульсаций 1, в которых соосно им смонтированы вращающиеся от двигателя валы 2 с неподвижно установленными на них дисками.

Группа изобретений относится к гидродинамическим системам и может быть использована в областях промышленности, применяющих пульсирующий режим течения жидкости. В способ генерирования колебаний жидкостного потока жидкость из напорной магистрали (11) предварительно разделяют на два потока снаружи вихревой камеры (1), внутри нее их закручивают с помощью каналов с разными скоростями в противоположных направлениях и при этом разделяют с помощью перегородки (4) со сквозным каналом (5).

Группа изобретений относится к гидродинамическим системам, в которых создаются колебания расхода и давления жидкости. Жидкость из напорной магистрали (5) разделяют на два потока - основной и дополнительный.

Группа изобретений относится к гидродинамическим системам. В способе генерирования колебаний жидкостного потока жидкость из магистрали (6) разделяют на потоки, подают в каналы закрутки (4) и (5) и закручивают в вихревой камере (2) в противоположных направлениях. При этом ближе к каналам (4) и (5) в плоскости сечений камеры (2) давление на оси вращения жидкости минимальное, а в зоне активного смешения противоположных закрученных потоков - максимальное. Закрученный поток из каналов (4), обладая высокой тангенциальной составляющей скорости, стравливается с минимальным расходом через выходное сопло (3). Давление в камере (2) резко возрастает и воздействует на перегородку (11). В результате упругого взаимодействия с объемом среды, заполнившей полость для упругости через перегородку (11), обратный импульс давления снижает интенсивность вращения противоположно закрученных потоков. Тангенциальная скорость падает, противоположно закрученные потоки останавливаются, и резко растет расход жидкости через сопло (3). Изобретение направлено на увеличение мощности генерирования колебаний за счет снижения гидравлических потерь и увеличения массы взаимодействующих потоков, а также снижение габаритов, упрощение конструкции и расширение условий применения. 2 н. и 11 з.п. ф-лы, 3 ил.

Изобретение относится к генератору волны сжатия среды и поршневой системы генератора и может быть использовано для инициирования химических или физических реакций в среде в камере, повышения температуры, давления энергии или плотности среды. Генератор волны сжатия содержит подвижный поршень с направляющей, внутри которой может двигаться или скользить тяга управления поршня и преобразователь, связанный со средой. Во время соударения поршня с преобразователем, тяга управления скользит в направляющей, что позволяет снизить напряжение в тяге. Генератор содержит демпфер, чтобы тормозить тягу управления, независимо от поршня. Соударение поршня с преобразователем передает часть кинетической энергии поршня в среду, за счет чего в среде создаются волны сжатия. Система привода поршня может быть использована для создания точного и управляемого перемещения поршня. 2 н. и 16 з.п. ф-лы, 4 ил.

Группа изобретений относится к нефтедобывающей промышленности и предназначена для очистки от твердых отложений стенок обсадных труб и отверстий перфорации, декольматации призабойной зоны пласта и увеличения подвижности пластовых флюидов. Способ генерирования волн давления на забое скважины, при котором устанавливают на нижнем конце канала насосно-компрессорной трубы (НКТ) струйный генератор Гельмгольца (СГГ). СГГ представляет собой полое тело вращения и состоит из: цилиндрической камеры с двумя параллельными днищами; входного сопла, расположенного в центре одного днища; и выходного отверстия с острой кромкой, расположенного соосно входному соплу в центре другого днища; в котором входное сопло соединяют с каналом НКТ, а выходное отверстие направляют в затрубное пространство скважины. Подают жидкость через входное сопло в цилиндрическую камеру, при этом формируют струю жидкости с возмущённой периферией в пространстве между днищами. Направляют струю жидкости в выходное отверстие. Генерируют таким образом первичные колебания давления в области острой кромки. Усиливают первичные колебания давления в цилиндрической камере, частота собственных колебаний которой настроена в резонанс с частотой первичных колебаний давления, и формируют волны давления за выходным отверстием в затрубном пространстве скважины. При этом устанавливают внутри цилиндрической камеры между днищами кольцо с острой внутренней входной кромкой. Направляют струю жидкости в выходное отверстие таким образом, чтобы струя в пространстве между входным соплом и выходным отверстием протекала сквозь кольцо и задевала своей возмущённой периферией острую внутреннюю входную кромку кольца, и генерируют таким образом первичные локальные колебания давления в области кольца. Причем частоту собственных колебаний цилиндрической камеры настраивают в резонанс с основной частотой первичных колебаний давления. Техническим результатом является повышение эффективности формирования волн давления в затрубном пространстве скважины. 2 н. и 2 з.п. ф-лы, 1 ил.

Группа изобретений относится к нефтедобывающей промышленности и предназначено для скважин с низким пластовым давлением, а именно для очистки от твердых отложений стенок обсадных труб и отверстий перфорации, декольматации призабойной зоны пласта и увеличения подвижности пластовых флюидов за счет генерации колебаний давления в подпакерной области при извлечении нефти струйным насосом. Способ нефтедобычи при низком пластовом давлении, при котором устанавливают на нижнем конце колонны насосно-компрессорных труб (НКТ) пакер и струйный насос с кольцевым соплом и кольцевым диффузором, разделёнными камерой разрежения с центральным всасывающим каналом. Подают жидкость по НКТ в струйный насос. Формируют кольцевую свободную струю жидкости в камере разрежения, в интервале между кольцевым соплом и кольцевым диффузором. Достигают таким образом снижение статического давления в камере разрежения. Обеспечивают подсасывание в неё нефти через центральный всасывающий канал и создают колебания давления с определённой частотой в камере разрежения. При этом генерируют первичные колебания давления с определённой частотой в кольцевой свободной струе жидкости за счёт направления этой струи на острые кромки кольцевого диффузора и усиливают первичные колебания давления в камере разрежения, частоту собственных колебаний которой настраивают в резонанс с частотой первичных колебаний давления. Техническим результатом является повышение эффективности формирования колебаний давления в подпакерной области скважины без нарушения непрерывности подачи рабочей жидкости по подводящему каналу. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области нефтегазодобывающей промышленности, а именно к устройствам для применения волновой технологии совмещенного воздействия на продуктивные пласты для повышения извлечения углеводородов. Бистабильный осциллятор низкой частоты для комбинированного воздействия на продуктивные нефтяные пласты низкой частотой состоит из рабочей камеры, выполненной в виде параллелепипеда, образованного боковыми, верхней и нижней стенками, в передней стенке которой установлено съемное сопло, расположенное соосно с продольной осью рабочей камеры, а на выходе присоединены два выходных патрубка. Причем длина одного превышает длину второго на величину, равную расстоянию, определяемому временем прохождения импульса расхода (давления) из камеры в забой скважины. При этом съемное сопло включает два участка канала, начальный - входной в виде цилиндрической полости и выходной участок со ступенчатым увеличением диаметра цилиндрической полости и меньшей длиной по отношению к начальному участку канала сопла для образования и срыва вихрей высокой частоты, в дополнение к основной колеблющейся с низкой частотой струе из сопла. Техническим результатом является повышение эффективности воздействия на пласт низкой частотой и очистки призабойной зоны скважины от кольматанта и загрязнений, снижающих приемистость скважины, а также повышение отдачи продуктивного пласта за счет увеличения приемистости нагнетательной скважины. 2 ил.

Группа изобретений относится к нефтедобывающей промышленности и предназначено для очистки от твердых отложений стенок обсадных труб и отверстий перфорации, декольматации призабойной зоны пласта и увеличения подвижности пластовых флюидов. Способ генерирования волн давления в затрубном пространстве скважины заключается в установке на нижнем конце канала насосно-компрессорной трубы (НКТ) струйного генератора Гельмгольца (СГГ) таким образом, что его питающее сопло и камеру-резонатор располагают внутри канала НКТ, а выпускное отверстие направляют из канала НКТ в затрубное пространство. Прокачивают жидкости через СГГ с увеличением скорости потока в питающем сопле и соответствующей потерей полного давления. Генерируют периодические колебания давления внутри СГГ. Формируют волны давления на выходе из выпускного отверстия в затрубном пространстве. При этом устанавливают на нижнем конце канала (НКТ) несколько СГГ таким образом, что у каждого питающее сопло и камеру-резонатор располагают внутри трубы поперек канала, а выпускное отверстие направляют из канала НКТ в затрубное пространство вбок, в направлении боковой стенки обсадной трубы. Прокачивают жидкость через несколько СГГ при суммарной площади их питающих сопел, сопоставимой с площадью канала НКТ, с незначительным увеличением скорости потока и потерей полного давления. Техническим результатом является повышение эффективности формирования волн давления в затрубном пространстве скважины без дросселирования потока жидкости в НКТ. 2 н. и 2 з.п. ф-лы, 1 ил.

Изобретение относится к гидромашиностроению и может быть использовано в различных отраслях промышленности, например в строительной, в горной, а также для испытания конструкций при динамических воздействиях. Гидровибратор содержит гидроцилиндр 1, имеющий поршень 2 со штоком 3, и блок 4 управления гидроцилиндром 1, второй гидроцилиндр 5, имеющий поршень 6 со штоком 7, и блок 8 управления гидроцилиндром 5. Ось симметрии одного штока гидроцилиндра является продолжением оси симметрии штока другого гидроцилиндра. Амплитуда колебаний второго поршня 6 меньше амплитуды колебаний первого поршня 2. Изобретение направлено на расширение функциональных возможностей за счет обеспечения возможности наложения на рабочий конец штока дополнительных колебаний. 4 з.п. ф-лы, 4 ил.

Изобретение относится к гидромашиностроению. Гидравлический следящий вибратор состоит из гидроцилиндра 1 двухстороннего действия, трехлинейной двухпозиционной распределяющей золотниковой пары 2 с положительным или нулевым перекрытием окон в нейтральном промежуточном положении золотника, следящей трехлинейной золотниковой пары 3 с положительным или нулевым перекрытием окон в нейтральном промежуточном положении золотника. Штоковая полость 4 имеет постоянную гидравлическую связь с напорной магистралью 5. Поршневая полость 6 имеет гидравлическую связь 7 с рабочим входом пары 2. Распределяющий золотник пары 2 имеет различные диаметры торцов. Малый по площади торец 8 находится в гидравлической связи 9 с магистралью 5, а больший торец 10 - имеет гидравлическую связь 11 с правым торцом 12 золотника пары 3. Пара 3 имеет постоянную гидравлическую связь 13 левого торца 14 золотника пары 3 с полостью 6. Торец 12 имеет гидравлическую связь 15 с рабочим каналом золотника 3. Золотник пары 3 имеет постоянную кинематическую связь 16 с поршнем 17 c обеспечением независимого смещения относительно друг друга золотника пары 3 и поршня 17 в заданном интервале. Изобретение направлено на обеспечение постоянства амплитуды колебаний и на повышение кпд. 1 ил.

Пневматический вибровозбудитель относится к устройствам для получения механических колебаний, приводимым в действие давлением сжатого воздуха и обеспечивающим возвратно-поступательное движение, и предназначен для использования в качестве привода для вибрационных конвейеров и питателей, а также в качестве движителя для бесколесных транспортных средств, взаимодействующих с поверхностью дороги. Заявленный вибровозбудитель, содержит поршень со штоком и центральным каналом в нем, помещенный с возможностью продольного перемещения в полый корпус, разделенный им на поршневую камеру и штоковую камеру, в боковой стенке которой имеется канал для подачи сжатого воздуха, а в торцевой стенке - отверстие, сквозь которое шток выведен наружу, а также переключающее устройство для попеременного сообщения поршневой камеры со штоковой камерой или с наружной средой. Особенность заявленного вибровозбудителя состоит в том, что переключающим устройством в нем является золотниковый распределитель, образованный отверстием в торцевой стенке штоковой камеры и штоком, в котором имеется два окружных ряда сквозных радиально направленных отверстий, сообщающих его поверхность с центральным каналом в нем и расположенных таким образом, что при втянутом поршне первый от него ряд отверстий открыт в штоковую камеру корпуса, а при выдвинутом поршне второй ряд отверстий открыт в наружную среду. Техническим результатом изобретения является упрощение конструкции вибровозбудителя и обеспечение возможности его работы без ударов. 2 з.п. ф-лы, 2 ил.

Группа изобретений относится к нефтедобывающей промышленности и предназначено для очистки от твёрдых отложений стенок обсадных труб и отверстий перфорации, декольматации призабойной зоны пласта и увеличения подвижности пластовых флюидов. В способе генерирования волн давления на забое скважины устанавливают на нижнем конце насосно-компрессорной трубы (НКТ) струйный генератор Гельмгольца (СГГ), представляющий собой колебательную систему, возбуждаемую струёй протекающей через неё жидкости и состоящую из струйного генератора, расположенного внутри камеры объёмного резонатора. При этом генерируют струйным генератором первичные колебания давления определённой частоты в струе жидкости и возбуждают ими колебательную систему. Усиливают первичные колебания давления в камере объёмного резонатора, частоту собственных колебаний которого настраивают в резонанс с частотой генерации первичных колебаний давления. Создают волны давления на забое скважины. При этом устанавливают за камерой объёмного резонатора ещё одну камеру с отверстием и формируют, таким образом, колебательную систему, имеющую три частоты собственных колебаний, не соответствующих частотам собственных колебаний её отдельных элементов. Настраивают частоту генерации первичных колебаний давления на высшую частоту собственных колебаний колебательной системы. При этом возбуждают колебательную систему на всех остальных собственных частотах и генерируют колебания давления на низшей частоте собственных колебаний. Техническим результатом является повышение эффективности генерирования низкочастотных колебаний на забое скважины высоскоростной струей. 2 н.п. ф-лы, 2 ил.
Наверх