Легкообрабатываемая конструкционная среднеуглеродистая хромомарганцевоникельмолибденовая сталь

Изобретение относится к области черной металлургии, а именно к получению сталей, применяемых в серийном и массовом производстве ответственных деталей машин. Сталь имеет следующий химический состав, мас.%: углерод 0,37-0,43, кремний 0,17-0,37, марганец 0,50-0,80, хром 0,60-0,90, никель 0,70-1,10, молибден 0,15-0,25, висмут 0,08-0,13, кальций 0,002-0,003, алюминий 0,005-0,015, железо - основа. В качестве примесей сталь содержит, мас.%: медь не более 0,25, серу не более 0,025 и фосфор не более 0,025. Отношение содержания кальция к содержанию алюминия составляет от 0,20 до 0,40. Повышается обрабатываемость стали резанием при сохранении требуемых механических свойств металла, а также улучшается экологическая обстановка производства за счет снижения агрессивности вредных выбросов в окружающую атмосферу высокотоксичных компонентов. 2 з.п. ф-лы, 2 табл., 11 пр.

 

Изобретение относится к черной металлургии, а именно к получению сталей с особыми технологическими свойствами, применяемых в серийном и массовом производстве ответственных деталей машин.

Из уровня техники известна сталь с улучшенной обрабатываемостью резанием (ГОСТ 1414-75). Прокат из конструкционной стали высокой обрабатываемости резанием. Технические условия (Переиздание, с Изменениями №1, 2, 3, с Поправками), содержащая углерод, кремний, марганец, хром, молибден, свинец, никель и железо при следующем соотношении компонентов, масс.%:

- углерод - 0,37-0,43;

- кремний - 0,17-0,37;

- марганец - 0,50-0,80;

- хром - 0,60-0,90;

- молибден - 0,15-0,25;

- свинец - 0,15-0,30;

- никель - 0,70-1,10;

- железо - основа.

Кроме того, в состав стали могут входить, масс.%:

- медь - не более 0,30;

- сера - не более 0,030;

- фосфор - не более 0,035.

К недостаткам данной стали можно отнести следующее:

- сера и фосфор, способствующие улучшению показателей обрабатываемости стали, в случае ее легирования свинцом не оказывают существенного влияния на процесс механического резания, а увеличение их содержания выше значений, обеспечивающих получение высококачественной стали, нецелесообразно в связи с аккумулятивным негативным воздействием указанных элементов на механические свойства металлопродукции;

- очевидная бесперспективность дальнейшего улучшения обрабатываемости стали путем увеличения содержания свинца больше регламентированных значений, поскольку превышение его предельной растворимости в железе приводит к ухудшению механических характеристик и росту их анизотропии, а также способствует усилению красноломкости поверхностного слоя в процессе горячей обработки металла давлением;

- неравномерное распределение свинца в теле слитка вследствие его большой физической плотности и высокой упругости пара, что затрудняет гарантированное получение требуемых свойств стали от плавки к плавке и обусловливает понижение выхода годного металла, а следовательно, и производительности процесса обработки давлением из-за образования дефектов в местах наибольшего скопления данного элемента;

- во время горячего пластического деформирования стали, содержащей свинец, происходит его диффузия на поверхность заготовки, что приводит к образованию в указанной области капиллярного слоя, ухудшающего условия захвата валками полосы металла вследствие уменьшения коэффициента трения, и снижению производительности прокатного оборудования;

- свинец крайне токсичен и согласно установленным на сегодняшний день гигиеническим нормативам относится к наивысшему 1 классу опасности, поэтому в черной металлургии все отчетливее прослеживается тенденция по отказу от его применения вследствие серьезного ухудшения экологии окружающей среды.

Кроме того, известна сталь с высокой обрабатываемостью резанием (патент RU 2128726), содержащая углерод, кремний, марганец, хром, молибден, висмут, никель, серу, фосфор и железо при следующем соотношении компонентов, масс. %:

- углерод - 0,37-0,43;

- кремний - 0,17-0,37;

- марганец - 0,50-0,80;

- хром - 0,60-0,90;

- молибден - 0,15-0,25;

- сера - 0,008-0,030;

- фосфор - 0,008-0,035;

- висмут - 0,12-0,20;

- никель - 0,70-1,10;

- железо - основа.

Известная сталь имеет следующие недостатки:

- бесперспективность дальнейшего улучшения обрабатываемости стали путем увеличения содержания висмута больше реальных значений, поскольку превышает его предельную растворимость в железе и увеличивает себестоимость выплавки.

Данная сталь, как наиболее схожая по химическому составу и механическим свойствам, принята за ближайший прототип.

Задачей, на решение которой направлено данное изобретение, является повышение обрабатываемости стали резанием при сохранении требуемых механических характеристик металла, за счет снижения агрессивности вредных выбросов в окружающую атмосферу токсичных компонентов.

Техническое решение поставленной задачи достигается за счет того, что предлагаемая сталь в своем составе содержит углерод, кремний, марганец, хром, никель, молибден, висмут, кальций, алюминий и железо при следующем соотношении компонентов, масс.%:

- углерод - 0,37-0,43;

- кремний - 0,17-0,37;

- марганец - 0,50-0,80;

- хром - 0,60-0,90;

- молибден - 0,15-0,25;

- висмут - 0,08-0,13;

- кальций - 0,002-0,003;

- алюминий - 0,005-0,015;

- никель - 0,70-1,10;

- железо - основа.

При этом отношение содержания кальция к содержанию алюминия находится в пределах от 0,20 до 0,40.

Кроме того, в качестве примесей сталь дополнительно может содержать, масс.%:

- серу - не более 0,025;

- фосфор - не более 0,025;

- медь - не более 0,25.

Применение висмута, кальция и алюминия для дополнительного легирования и раскисления стали с целью улучшения ее обрабатываемости резанием имеет целый ряд преимуществ.

Во-первых, сокращение количества алюминия, применяемого для раскисления стали, будет способствовать снижению в стали неметаллических включений Аl2O3.

Во-вторых, кальций является своего рода заменителем алюминия, как раскислителя, и обеспечивает образование алюминатов кальция в сульфидной оболочке - комплексных оксисульфидных включений, способствует глобуризации сульфидных включений и предупреждает образование микротрещин у остроугольных включений глинозема, оказывающих положительное влияние на обрабатываемость стали.

В-третьих, оптимальное соотношение Са/Аl способствует образованию глобулярных, малодеформируемых неметаллических включений.

В-четвертых, снижение содержания висмута, без снижения показателя обрабатываемости, обеспечивает образование ломкой стружки и расширяет диапазон применения стали (при сверлении, развертывании отверстий, нарезании и фрезеровании) и не ослабляет положительное влияние на результаты процесса со стороны фосфора и включений сульфида марганца. Он менее токсичен, чем свинец и обеспечивает высокий уровень обрабатываемости при содержании его в 1,5..2 раза меньше, чем свинец.

В-пятых, висмут равномерно распределяется по сечению слитка, что обусловлено его плотностью, сопоставимой с плотностью жидкой стали, и применение висмута способствует решению экологических проблем, имеющих место при производстве автоматных сталей. Это связано с тем, что в отличие от свинца, принадлежащего к 1 классу опасности, содержание висмута в атмосфере цеха ограничено среднесменной предельно допустимой концентрацией (ПДК), равной 0,50 мг/м3.

Сущность изобретения - выявление оптимального содержания висмута, алюминия и кальция, при котором достигается наилучшее сочетание высокой обрабатываемости стали резанием при условии сохранения требуемых значений механических свойств.

В результате проведенных исследований установлено следующее:

- при содержании висмута меньше нижнего предела не удается достигнуть требуемого высокого уровня обрабатываемости стали резанием;

- при условии содержания висмута по верхнему пределу обрабатываемость предлагаемой стали сопоставима с обрабатываемостью металла аналогичной висмутсодержащей марки;

- при содержании висмута, кальция и алюминия в заявленных пределах уровень обрабатываемости предложенной стали на 11% превышает величину обрабатываемости висмутсодержащего аналога, наряду с этим сталь сохраняет свои высокие механические характеристики, а ее получение характеризуется пониженной загрязненностью воздуха рабочей зоны и более безопасными условиями труда производственного персонала.

Эффективность токарной обработки оценивалась на технической базе ФГБОУ ВПО «Южно-Уральский государственный университет» (НИУ) по изменению стойкости инструментального материала при заданной скорости резания заготовок. В качестве критерия для оценки обрабатываемости стали было установлено значение приведенной стойкости, выраженное величиной износа режущего инструмента по задней поверхности при обработке одной детали.

В качестве базового уровня приняты обрабатываемость резанием среднеуглеродистой хромомарганцевоникельмолибденовой стали АВ40ХГНМ.

Химический состав известной стали марки ΑΒ40ΧΓΉΜ, принятой за ближайший аналог, и предлагаемой стали приведен в таблице 1.

Прочностные и пластические характеристики сравниваемых сталей в деформированном и термически обработанном состоянии (закалка и отпуск), а также измеренный уровень механической обрабатываемости представлен в таблице 2.

Пример 1. Известная конструкционная среднеуглеродистая хромомарганцевоникельмолибденовая сталь с улучшенной обрабатываемостью резанием АВ40ХГНМ (RU 2128726). Уровень механической обрабатываемости принят в качестве базовых значений для сравнения.

Пример 2. Содержание серы и фосфора больше заявленных значений. Механические характеристики металла не соответствуют требованиям ГОСТа. Оценка эффективности токарной обработки стали не проводилась.

Пример 3. Содержание никеля больше верхнего предела. Уменьшается производительность горячей обработки металла давлением. Оценка на обрабатываемость не производилась.

Пример 4. Содержание висмута меньше нижнего предела. Уровень обрабатываемости предложенной стали ниже, чем у известного аналога.

Пример 5. Содержание висмута в стали больше верхнего предела. Обрабатываемость предложенной стали резанием сопоставима с механической обрабатываемостью ее аналога.

Пример 6. Содержание серы, фосфора, меди находится на уровне верхней границы заявленных диапазонов. Показатели механических свойств металла соответствуют минимальным предельно допустимым значениям, установленным требованиями для висмутсодержащего аналога.

Пример 7. Соотношение между содержанием кальция и алюминия выходит за нижнюю регламентированную границу. Размер зерна ниже регламентируемого. Происходит зарастание стаканчиков на машине непрерывного литья заготовок (МНЛЗ). Уровень обрабатываемости предложенной стали сопоставим с обрабатываемостью известного аналога.

Пример 8. Соотношение между содержанием кальция и алюминия находится на уровне нижнего предела из указанного диапазона. Размер зерна соответствует техническим условиям. Не происходит зарастание стаканчиков МНЛЗ. Уровень обрабатываемости выше известного аналога.

Пример 9. Соотношение между содержанием кальция и алюминия имеет значение, соответствующее верхнему заявленному пределу. Сталь соответствует техническим условиям.

Пример 10. Соотношение между содержанием кальция и алюминия выходит за верхнюю установленную границу. Сталь не соответствует техническим условиям.

Пример 11. Содержание всех элементов находится в заявленных пределах. Комплекс технологических свойств хромомарганцевоникельмолибденовой стали имеет оптимальный характер. Показатель обрабатываемости резанием при сохранении механических характеристик металла на 11% выше, чем у известного аналога.

Вместе с тем существенно уменьшается загрязненность воздуха рабочей зоны.

Таким образом, более высокий уровень обрабатываемости резанием предлагаемой стали с сохранением комплекса требуемых механических свойств металла и улучшением экологии металлургического производства позволяет рекомендовать ее для промышленного применения.

1. Легкообрабатываемая конструкционная хромомарганцевоникельмолибденовая сталь, содержащая углерод, кремний, марганец, хром, никель, молибден, висмут и железо, отличающаяся тем, что она дополнительно содержит кальций и алюминий при следующем соотношении компонентов, мас.%:

углерод 0,37-0,43
кремний 0,17-0,37
марганец 0,50-0,80
хром 0,60-0,90
молибден 0,15-0,25
висмут 0,08-0,13
кальций 0,002-0,003
алюминий 0,005-0,015
никель 0,70-1,10
железо остальное

2. Сталь по п. 1, отличающаяся тем, что в ней ограничено содержание вредных примесей, мас.%: сера не более 0,025, фосфор не более 0,025, медь не более 0,25.

3. Сталь по п. 2, отличающаяся тем, что отношение содержания кальция к содержанию алюминия находится в пределах от 0,20 до 0,40.



 

Похожие патенты:

Изобретение относится к высокопрочной высокопластичной легированной стали и изделиям, изготавливаемым из нее. Сталь содержит компоненты в следующем соотношении, мас.%: С 0,30-0,47, Mn 0,8-1,3, Si 1,5-2,5, Cr 1,5-2,5, Ni 3,0-5,0, Mo+½W 0,7-0,9, Cu 0,70-0,90, Со до 0,01, V+(5/9)×Nb 0,10-0,25, Ti до 0,005, Al до 0,015, Fe и примеси остальное.

Изобретение относится к области черной металлургии, а именно к получению сталей, применяемых в серийном и массовом производстве ответственных деталей машин. Сталь имеет следующий химический состав, мас.%: углерод 0,18-0,23, кремний 0,17-0,37, марганец 0,70-1,10, хром 0,40-0,70, никель 0,40-0,70, молибден 0,15-0,25, висмут 0,08-0,13, кальций 0,002-0,003, алюминий 0,005-0,015, железо - основа.

Изобретение относится к области металлургии, а именно к двухслойному листовому прокату толщиной 10-50 мм, состоящему из слоя износостойкой стали и слоя свариваемой стали, для изготовления сварных конструкций, подвергающихся ударно-абразивному износу и работающих при температуре до -40°C.
Сталь // 2532661
Изобретение относится к металлургии, а именно к высококачественным легированным конструкционным сталям для изготовления силовых деталей, шестерен и валов, поверхности которых упрочняют цементацией или нитроцементацией.
Изобретение относится к области металлургии, а именно к высокопрочным коррозионно-стойким сталям для высоконагруженных деталей, используемых в машиностроении, приборостроении.
Изобретение относится к области металлургии, а именно к высокопрочной броневой листовой стали. Сталь содержит компоненты в следующем соотношении, мас.%: углерод 0,28-0,40, кремний 0,80-1,40, марганец 0,50-0,80, хром 0,10-0,70, никель 1,50-2,20, молибден 0,30-0,80, алюминий 0,005-0,05, медь не более 0,30, сера не более 0,012, фосфор не более 0,015, железо - остальное.

Изобретение относится к области металлургии, а именно к высокопрочной нержавеющей стали для нефтяных скважин. Сталь содержит, в мас.%: С: максимум 0,05, Si: максимум 1,0, Mn: максимум 0,3, P: максимум 0,05, S: менее 0,002, Cr: более 16 и максимум 18, Мо: от 1,5 до 3,0, Cu: от 1,0 до 3,5, Ni: от 3,5 до 6,5, Al: от 0,001 до 0,1, N: максимум 0,025 и О: максимум 0,01, Fe и примеси остальное.
Изобретение относится к черной металлургии, а именно к получению сталей с особыми технологическими свойствами, применяемых для изготовления ответственных деталей машин.
Изобретение относится к области металлургии, а именно к получению сталей с особыми технологическими свойствами, применяющихся в серийном производстве ответственных деталей машин.

Изобретение относится к области металлургии, в частности к нержавеющей стали для нефтяной скважины и трубе из нержавеющей стали для нефтяной скважины. Нержавеющая сталь для нефтяной скважины содержит, % по массе: С не более 0,05, Si не более 0,5, Mn от 0,01 до 0,5, Р не более 0,04, S не более 0,01, Cr свыше 16,0 и не более 18,0, Ni свыше 4,0 и не более 5,6, Мо от 1,6 до 4,0, Cu от 1,5 до 3,0, Al от 0,001 до 0,10, и N не более 0,050, причем остальное составляют Fe и примеси.

Изобретение относится к области металлургии, а именно к составам коррозионно-стойких немагнитных (аустенитных) сталей повышенной прочности и к изделиям, выполненным из нее, для работы в окислительных и восстановительных средах средней и высокой агрессивности. Сталь содержит, мас.%: углерод ≤0,03, марганец 1,0-2,0, хром 14,0-18,0, никель 8,5-14,5, азот 0,06-0,35, церий 0,001-0,05, кремний от более 2,0 до 4,5, молибден 2,5-4,5, железо и неизбежные примеси остальное. Для компонентов стали выполняется следующее соотношение: ( C r + 0,75 S i + M o ) / ( 2 N i + 0,5 M n + 40 ( N + C ) ) = 0,35 ÷ 1,30. Обеспечивается высокая коррозионная стойкость против общей и межкристаллитной коррозии в средах сильно окисляющего (кипящая азотная кислота различной концентрации) и в хлоридсодержащих средах восстановительного (соляная, серная, сернистая кислоты) характера при сохранении комплекса физико-механических свойств. 2 н. и 6 з.п. ф-лы, 5 табл.

Изобретение относится к области черной металлургии, а именно к низколегированным сталям повышенной жаропрочности и хладостойкости, применяемым при производстве корпусов и внутренних элементов аппаратуры нефтеперерабатывающих заводов и крекинговых труб, задвижек, деталей насосов, спецкрепежа труб, трубопроводной арматуры, деталей трубопроводов, коммуникационных и печных труб, используемых в тепловых сетях и энергомашиностроении. Сталь содержит, мас.%: углерод 0,10-0,16, кремний 0,10-0,50, марганец 0,20-0,60, хром 4,2-5,0, никель 0,10-0,30, медь 0,05-0,20, молибден 0,30-0,60, сера не более 0,010, фосфор не более 0,015, железо остальное. Сталь обладает высокими показателями по прочности при высоких температурах и ударной вязкости при отрицательных температурах, характеризуется стойкостью к коррозии и окислению. 2 табл., 1 пр.

Изобретение относится к области металлургии, а именно к созданию высокопрочной коррозионно-стойкой стали, используемой для изготовления изделий, работающих при высоких растягивающих и изгибающих нагрузках, преимущественно проволоки малого диаметра, используемой в авиационной промышленности и машиностроении. Сталь содержит углерод, хром, никель, молибден, азот, марганец, кремний, иттрий, лантан, церий, празеодим, железо и неизбежные примеси при следующем соотношении компонентов, мас.%: углерод 0,21, хром 15,0-16,5, никель 6,0-7,2, молибден 2,7-3,2, азот 0,04-0,09, марганец не более 1,0, кремний не более 0,6, иттрий не более 0,002, лантан не более 0,002, церий не более 0,002, празеодим не более 0,002, железо и неизбежные примеси - остальное. Повышается кратковременная прочность до значений не менее 2550 МПа и относительное удлинение до значений не менее 35%. 2 з.п. ф-лы, 2 табл., 1 пр.

Изобретение относится к области металлургии, а именно к низколегированным сталям повышенной теплоустойчивости, применяемым при производстве плавниковых труб, предназначенных для паровых котлов, труб пароперегревателей, трубопроводов и коллекторных установок высокого давления, деталей цилиндров газовых турбин, различных деталей, работающих при температуре до +480-500°C, воротниковых фланцев, штуцеров, колец, патрубков, тройников для энергооборудования и трубопроводов тепловых электростанций. Получают сляб из стали, имеющей химический состав, в мас.%: углерод 0,15-0,22, кремний 0,15-0,50, марганец 0,60-1,00, алюминий 0,01-0,06%, хром не более 0,3, никель не более 0,3, медь не более 0,3, молибден 0,20-0,50, сера не более 0,007, фосфор не более 0,020, азот не более 0,012, железо и неизбежные примеси - остальное. Осуществляют нагрев слябов под прокатку до температуры 1200-1250°C. Выполняют многопроходную реверсивную черновую и чистовую прокатку. Черновую прокатку завершают при температуре не более 1100°C, а чистовую прокатку ведут за 7-11 проходов и завершают в диапазоне температур от 880 до 910°C с относительным обжатием в последнем проходе от 10% до 15%. После прокатки и охлаждения листы подвергают термообработке при температуре 900-930°C с последующим охлаждением на воздухе. Обеспечивается высокий уровень теплоустойчивости и ударной вязкости. 3 табл.

Изобретение относится к области металлургии, а именно к составам высокопрочных нержавеющих сталей, используемых для изготовления бесшовных труб для нефтяных скважит. Сталь содержит, мас.%: С: 0,05 или меньше, Si: 0,5 или меньше, Mn: 0,15 или больше и 1,0 или меньше, Cr: 13,5 или больше и 15,4 или меньше, Ni: 3,5 или больше и 6,0 или меньше, Мо: 1,5 или больше и 5,0 или меньше, Cu: 3,5 или меньше, W: 2,5 или меньше, N: 0,15 или меньше, Fe и неизбежные примеси остальное. Для компонентов стали выполняется следующее условие: -5,9×(7,82+27C-0,91Si+0,21Mn-0,9Cr+Ni-1,1Mo-0,55W+0,2Cu+11N)≥13,0. Сталь обладает высокой стойкостью к сульфидному коррозионному растрескиванию под напряжением. 2 н. и 18 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к плакирующему материалу для стального листа, используемого в морских конструкциях, устройствах опреснения морской воды. Плакирующий материал содержит, мас.%: 0,03 или менее углерода, 1,5 или менее кремния, 2,0 или менее марганца, 0,04 или менее фосфора, 0,03 или менее серы, от 22,0 до 25,0 никеля, от 21,0 до 25,0 хрома, от 2,0 до 5,0 молибдена, от 0,15 до 0,25 азота, остальное железо и неизбежные примеси. Критическая температура питтинговой коррозии (СРТ) плакирующего материала после нормализации, определяемая в соответствии с ASTM G48-03 Method E, составляет 45°С или выше, а потери от коррозии в зоне сварки, определенные посредством коррозионного испытания в соответствии со стандартом NORSOK M-601, составляют 1,0 г/м2 или менее. Плакирующий материал для стального листа обладает высокой коррозионной стойкостью к морской воде, обеспечивает целостность соединения с улучшенной надежностью при одновременном поддержании высоких коррозионных и механических свойств основного и плакирующего материалов. 5 н. и 4 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области металлургии, а именно к получению аустенитной нержавеющей нанодвойникованной TWIP стали. Выплавляют аустенитную нержавеющую сталь, содержащую, мас.%: не более чем 0,018 C, 0,25-0,75 Si, 1,5-2 Mn, 17,80-19,60 Cr, 24,00-25,25 Ni, 3,75-4,85 Mo, 1,26-2,78 Cu, 0,04-0,15 N, остальное – Fe и неизбежные примеси. Доводят сталь до температуры ниже 0°C и подвергают воздействию пластической деформации со степенью деформации по меньшей мере 30% для образования нанодвойников со средним расстоянием между ними менее 1000 нм и плотностью более 35%. Обеспечивается получение стали, обладающей высокой прочностью. 2 н. и 11 з.п. ф-лы, 9 ил., 5 табл.

Изобретение относится к области металлургии, а именно к способам производства высокопрочного износостойкого биметаллического конструкционного материала с основным слоем из низколегированной стали и плакирующим слоем из коррозионно-стойкой стали, предназначенного для применения в изделиях нефтяного и химического машиностроения, а также других отраслях, где необходимо применение коррозионно-стойких в агрессивных средах элементов конструкций и аппаратов. На основной слой наносят плакирующий слой из коррозионно-стойкой износостойкой аустенитно-ферритной стали электрошлаковой наплавкой расходуемыми электродами. Электроды изготовлены из стали следующего состава, мас.%: углерод 0,010-0,035, кремний 0,5-1,0, марганец 0,7-2,0, хром 21-25, никель 4,5-7,5, молибден 2,5-4,5, титан не более 0,005, алюминий не более 0,03, азот 0,01-0,20, сера 0,0025-0,0035, фосфор 0,010-0,020, железо и неизбежные примеси остальное, а глубина проплавления основного слоя при наплавке составляет не более 5 мм. Затем осуществляют горячую прокатку и термическую обработку. Повышается коррозионная стойкость, в том числе стойкость к питтинговой коррозии, прочностные характеристики и износостойкость биметаллических конструкционных материалов, а также снижается себестоимость биметалла. 1 табл.

Изобретение относится к области черной металлургии. Для повышения прочности, ударной вязкости и относительного сужения в направлении толщины проката при низких температурах получают горячекатаный прокат толщиной 8-50 мм с повышенным уровнем хладостойкости, выплавляют сталь, содержащую, мас. %: углерод 0,07-0,12, марганец 0,20-0,70, кремний 0,10-0,50, хром 1,00-1,40, никель 1,50-2,00, молибден 0,10-0,30, медь 0,20-0,50, ниобий 0,02-0,05, алюминий 0,01-0,06, азот не более 0,008, сера не более 0,005, фосфор не более 0,010, железо – остальное, получают слябы, нагревают их до 1240-1260°C в печах и прокатывают на толстолистовом стане в листы до конечной толщины при температуре конца прокатки не более 890°C, охлаждают на воздухе, затем осуществляют нагрев листов до 920-940°C с общей выдержкой 2,0-3,0 мин/мм с последующей закалкой в воду и проводят отпуск при 690-740°C с выдержкой 1,5-2,8 мин/мм в зависимости от толщины с охлаждением на воздухе. 3 табл.

Изобретение относится к области металлургии, в частности к способам получения листовой плакированной стали, и может быть использовано для строительства железнодорожных мостов, а также для оборудования нефтехимической промышленности. Способ производства листовой плакированной стали включает получение заготовки с поверхностным слоем из коррозионно-стойкой стали и основным слоем из углеродистой стали и горячую прокатку заготовки, при этом нагрев заготовки перед горячей прокаткой осуществляют в диапазоне температур от 1250 до 1300°С, охлаждение после прокатки ведут со скоростью не менее 7°С/с, причем температура конца ускоренного охлаждения составляет не выше 600°С, а заготовку получают из стали с плакирующим слоем из нержавеющей стали с ферритомартенситной структурой, содержащей, мас.%: углерод 0,01-0,15, кремний 0,30-0,70, марганец 0,50-2,7, хром 14-17, никель 1,0-2,5, молибден 0,01-2,5, титан 0,01-0,1, ванадий 0,01-0,1, ниобий 0,01-0,1, азот 0,1-0,3, фосфор 0,002-0,003, сера не более 0,005, железо и неизбежные примеси остальное. Изобретение направлено на повышение прочности и износостойкости стали с плакирующим слоем, а также на снижение затрат на производство при сохранении высокой прочности и сплошности соединения слоев, пластичности слоистого материала, а также высоких коррозионных свойств плакирующего слоя и хладостойкости стали основного слоя. 3 табл., 1 пр.
Наверх