Способ и устройство для передачи электрической энергии

Изобретение относится к электротехнике, в частности к способам и устройствам для передачи электрической энергии. Технический результат состоит в обеспечении передачи электрической энергии в водной среде, снижении затрат на передачу электроэнергии, а также повышении кпд. Создают резонансные колебания повышенной частоты в цепи, состоящей из источника энергии с повышающим высокочастотным трансформатором Тесла и резонансным контуром в низковольтной обмотке. Передают электрическую энергию вдоль проводящего канала к понижающему высокочастотному резонансному трансформатору Тесла, снижают потенциал высоковольтных колебаний и передают электрическую энергию через инвертор к электрической нагрузке. В высоковольтных обмотках повышающего и понижающего трансформатора Тесла создают последовательные резонансные контуры путем соединения высокопотенциальных выводов высоковольтных обмоток трансформаторов Тесла с естественной емкостью в виде сферы, тороида или проводящего тела произвольной формы, настраивают последовательные резонансные контуры в высоковольтных обмотках на общую резонансную частоту контуров в низковольтных обмотках трансформаторов Тесла, размещают понижающий резонансный трансформатор, инвертор и электрическую нагрузку на морском подводном или надводном корабле, соединяют низкопотенциальные выводы высоковольтных обмоток обоих трансформаторов с морской средой, повышают напряжение на повышающем трансформаторе Тесла и создают стационарные волны колебаний электромагнитной энергии в морской среде с резонансной частотой. 2 н. и 6 з.п. ф-лы, 4 ил.

 

Изобретение относится к области электротехники, в частности к способам и устройствам для передачи электрической энергии.

Известен способ и устройство для передачи электроэнергии по замкнутой цепи, состоящей из двух или более проводов, трансформаторных подстанций и линий электропередачи (Электропередачи переменного и постоянного тока. Электротехнический справочник. - М.: Энергоатомиздат, 1988, с.337-352).

Недостатками известного способа являются потери в линиях, составляющие от 5% до 20% в зависимости от длины ЛЭП, и высокая стоимость оборудования. При этом цепь, соединяющая источник энергии и нагрузку, обязательно должна быть замкнутым контуром.

Известен способ питания электротехнических устройств с использованием генератора переменного напряжения, подключаемого к потребителю, в котором напряжение генератора подают на низковольтную обмотку высокочастотного трансформатора, а один из выводов высоковольтной обмотки соединяют с одной из входных клемм электротехнического устройства, при этом изменением частоты генератора добиваются установления резонансных колебаний в образованной электрической цепи.

Устройство, реализующее данный способ, представляет собой источник переменного напряжения с регулируемой частотой, высокочастотный трансформатор, один вывод высоковольтной секции которого изолирован, а второй предназначен для подачи энергии потребителю (патент РФ №2108649, 1998, Авраменко С.В. Способ питания электротехнических устройств и устройство для его осуществления).

Недостатком известного способа является необходимость использования для передачи электроэнергии линии из опор, изоляторов, проводов или кабеля, что увеличивает стоимость передачи электроэнергии.

Другим недостатком является невозможность прямого использования этого способа и устройства для непосредственного питания движущихся электрических транспортных средств: автомобилей, тракторов.

Известен способ передачи электрической энергии путем создания резонансных колебаний повышенной частоты в цепи, состоящей из высокочастотного генератора и двух, понижающего и повышающего, высокочастотных трансформаторов Тесла, передачи высоковольтного потенциала и электрической энергии по однопроводной линии к понижающему трансформатору Тесла, понижения потенциала его высоковольтного вывода и передачи энергии нагрузке (патент РФ №2255406, 2003, Стребков Д.С., Авраменко С.В., Некрасов А.И. Способ и устройство для передачи электрической энергии).

Недостатком известного способа является необходимость для передачи энергии подключения передающего высокочастотного трансформатора Тесла к двум электрически потенциально различным носителям энергии (однопроводниковая линия и земля) либо к одной электрически изолированной от земли и находящейся под высоким электрическим потенциалом однопроводниковой линии, что требует использования опор, изоляторов, проводов.

Известен способ и устройство для передачи электрической энергии без металлических проводов с использованием в качестве проводящего канала транспортных трубопроводов с перемещаемым по ним жидким или газообразным веществом. В этом случае между источником и приемником электрической энергии формируют в электроизоляционной оболочке электропроводящий канал из вещества в жидкой, твердой или газообразной фазе. В проводящем канале генерируют электромагнитные колебания электрического поля, при этом за счет резонансных колебаний создают в канале пучности напряжений, а энергию электрического поля канала преобразуют в активную энергию для потребителя (Патент РФ №2172546, 2000. Стребков Д.С., Авраменко С.В. Способ и устройство для передачи электрической энергии).

Недостатком известного способа является необходимость формирования изолированного от окружающей среды проводящего канала, а также применения электрически высокопрочного материала для создания электроизолирующей оболочки проводящего канала, т.к. интенсивность передачи электроэнергии прямо пропорциональна квадрату напряжения в проводящем канале. Другим недостатком является то, что все известные способы и устройства не позволяют передавать энергию в водной среде.

Задачей предлагаемого изобретения является создание способа и устройства для передачи электрической энергии в водной среде с использованием изолированных трубопроводов в качестве проводящего канала, снижение затрат на передачу электроэнергии за счет исключения опор, проводов, изоляторов, кабелей, а также повышение КПД передачи электрической энергии.

Технический результат достигается тем, что в способе передачи электрической энергии с использованием проводящего канала из вещества в жидкой фазе и создания резонансных колебаний повышенной частоты в цепи, состоящей из источника энергии с повышающим высокочастотным трансформатором Тесла и резонансным контуром в низковольтной обмотке, проводящего канала и понижающего высокочастотного трансформатора Тесла с резонансным контуром в низковольтной обмотке, передачи электрической энергии вдоль проводящего канала к понижающему высокочастотному резонансному трансформатору Тесла, снижения потенциала высоковольтных колебаний и передачи электрической энергии через инвертор к электрической нагрузке, в высоковольтных обмотках повышающего и понижающего высокочастотных резонансных трансформаторов Тесла создают последовательные резонансные контуры путем соединения высокопотенциальных выводов высоковольтных обмоток трансформаторов Тесла с естественной емкостью, выполненной в виде сферы, тороида или проводящего тела произвольной формы, настраивают последовательные резонансные контуры в высоковольтных обмотках на общую резонансную частоту контуров в низковольтных обмотках трансформаторов Тесла, размещают понижающий резонансный трансформатор, инвертор и электрическую нагрузку на морском подводном или надводном корабле, соединяют низкопотенциальные выводы высоковольтных обмоток обоих трансформаторов с морской средой, повышают напряжение на повышающем трансформаторе Тесла и создают стационарные волны колебаний электромагнитной энергии в морской среде с резонансной частотой

f 0 = 1 2 π L 1 C 1 = 1 2 π L 2 C 2 = 1 2 π L 3 C 3 = 1 2 π L 4 C 4 ,

где L1C1, L2C2 - индуктивности и емкости резонансных контуров в низковольтной и высоковольтной обмотках повышающего высокочастотного резонансного трансформатора Тесла, L3C3, L4C4 - индуктивности и емкости резонансных контуров низковольтной и высоковольтной обмоток понижающего высокочастотного резонансного трансформатора Тесла.

В варианте способа передачи электрической энергии на морские и океанские надводные и подводные корабли высокочастотный источник энергии с повышающим высокочастотным резонансным трансформатором Тесла устанавливают на берегу моря или океана.

В другом варианте способа передачи электрической энергии на морские и океанские надводные и подводные корабли высокочастотный источник энергии с повышающим высокочастотным резонансным трансформатором Тесла устанавливают на надводном морском или океанском корабле.

Еще в одном варианте способа передачи электрической энергии на морские и океанские надводные и подводные корабли высокочастотный источник энергии с повышающим высокочастотным резонансным трансформатором Тесла устанавливают на подводном морском или океанском корабле.

В устройстве для передачи электрической энергии, содержащем источники и приемники электрической энергии с проводящими каналами между ними из вещества в виде жидкой фазы, каждый источник электрической энергии соединен с проводящим каналом через повышающий высокочастотный резонансный трансформатор Тесла, а каждый приемник с противоположной стороны проводящего канала соединен с ним через понижающий высокочастотный резонансный трансформатор Тесла, каждый высокочастотный трансформатор Тесла имеет два резонансных последовательных контура с общей резонансной частотой f 0 = 1 2 π L 1 C 1 = 1 2 π L 2 C 2 = 1 2 π L 3 C 3 = 1 2 π L 4 C 4 ,

где L1C1 и L2C2 - индуктивности и емкости резонансных контуров в низковольтной и высоковольтной обмотках повышающего трансформатора Тесла, L3C3 и L4C4 - индуктивности и емкости резонансных контуров низковольтной и высоковольтной обмоток понижающего трансформатора Тесла, L1 и L3 - индуктивности низковольтных обмоток, C1 и C3 - емкости конденсаторов, последовательно включенных с низковольтными обмотками, L2 и L4 - индуктивности высоковольтных обмоток, естественные емкости конденсаторов C2 и C4 выполнены в виде сферы, тороида или проводящего тела произвольной формы и соединены с высокопотенциальными выводами высоковольтных обмоток высокочастотных резонансных трансформаторов Тесла, низкопотенциальные выводы высоковольтных обмоток высокочастотных резонансных трансформаторов Тесла соединены изолированными кабельными линиями с морской средой, приемник энергии с понижающим высокочастотным резонансным трансформатором Тесла установлен в море или океане на подводном и/или надводном корабле.

В варианте устройства для передачи электрической энергии источник энергии с повышающим высокочастотным резонансным трансформатором Тесла размещен на берегу моря или океана.

В другом варианте устройства для передачи электрической энергии источник энергии с повышающим высокочастотным резонансным трансформатором Тесла размещен на надводном морском или океанском корабле.

Еще в одном варианте устройства для передачи электрической энергии источник энергии с повышающим высокочастотным резонансным трансформатором Тесла размещен на подводном морском или океанском корабле.

Изобретение иллюстрируется фиг.1, фиг.2, фиг.3, фиг.4, где на фиг.1 представлена блок-схема способа и устройства для передачи электрической энергии от источника энергии на берегу океана на подводный корабль, на фиг.2 - блок-схема способа и устройства для передачи электрической энергии от источника энергии на берегу на надводный корабль, на фиг.3 - блок-схема способа и устройства для передачи электрической энергии от источника энергии на надводном корабле на подводный и надводный корабли, на фиг.4 - блок-схема способа и устройства для передачи электрической энергии от источника энергии на подводном корабле на подводный и надводный корабли.

На фиг.1 высокочастотный источник энергии 1 соединен через емкость 2 с низковольтной обмоткой 3 повышающего резонансного трансформатора Тесла 4. Высоковольтный вывод 5 высоковольтной обмотки 6 соединен с естественной емкостью 7, выполненной в виде сферы, установленной на регулируемой высоте h1 от поверхности морской среды (моря) 8 на берегу 9. Низкопотенциальный вывод 10 высоковольтной обмотки 6 трансформатора Тесла 4 соединен электроизолированным кабелем 11 с морской средой 8 с глубиной погружения кабеля h2. На конце кабеля 11 в морской среде 8 могут быть установлены широкополосные или узконаправленные антенны для передачи электрической энергии в морской среде 8 в заданном направлении. Источник энергии 1 с резонансной емкостью 2 и повышающим высокочастотным резонансным трансформатором Тесла 4 размещен в контейнере 12 на берегу 9 моря 8. Электрическую энергию от источника энергии 1 подают с берега моря через морскую среду на подводный корабль 13. На подводном корабле 13 внутри корпуса 14 установлен высокочастотный понижающий резонансный трансформатор Тесла 15. Высокопотенциальный вывод 16 высоковольтной обмотки 17 соединен с естественной емкостью 18, которая установлена внутри корабля 13. Низкопотенциальный вывод 19 высоковольтной обмотки 17 соединен с помощью кабеля 20 с морской средой 11. Низковольтная обмотка 21 понижающего высокочастотного резонансного трансформатора Тесла 15 соединена через емкость 22 и инвертор 23 с электрической нагрузкой 24. В качестве электрической нагрузки 24 используют электрические схемы подводного корабля и накопители энергии (на фиг.1 не показаны).

На фиг.2 электрическую энергию от источника энергии 1 на берегу 9 моря 8 передают через морскую среду 8 на понижающий высокочастотный резонансный трансформатор 15 с емкостью 22 и инвертором, который размещен в контейнере 25 на борту надводного корабля 26. Естественная емкость 18 установлена над кораблем на регулируемой высоте h3.

На фиг.3 контейнер 12 с высокочастотным источником электрической энергии 1, емкостью 2 и повышающим трансформатором Тесла 4 установлен на надводном корабле 27. Естественная емкость 7 установлена над кораблем 27 на регулируемой высоте h1. Электрическую энергию от источника 1 на надводном корабле 27 передают через морскую среду на резонансные понижающие трансформаторы 15 с емкостью 22, инвертором и естественной емкостью 18, которые установлены на подводном корабле 28 аналогично фиг.1 и на надводном корабле 29 аналогично фиг.2.

На фиг.4 высокочастотный источник 1 электрической энергии, повышающий высокочастотный резонансный трансформатор Тесла 4 с емкостью 2 и естественной емкостью 30 установлены на подводном корабле 31. Электрическую энергию от источника энергии 1 передают через морскую среду 8 на резонансные понижающие высокочастотные резонансные трансформаторы 15 с емкостью 22 и естественной емкостью 18, которые установлены на подводном корабле 32 аналогично фиг.1 и на надводном корабле 33 аналогично фиг.2.

Способ и устройство для передачи электрической энергии реализуются следующим образом.

При подаче электрической энергии от высокочастотного источника 1 на низковольтную обмотку 3 в последовательном контуре, состоящем из низковольтной обмотки 3 с индуктивностью L1 и емкости 2 величиной C1, возникают электромагнитные колебания с резонансной частотой f 0 = 1 2 π L 1 C 1 . Индуктивность L2 высоковольтной обмотки 6 и емкость C2 естественной емкости 7 выбирают согласно условию f 0 = 1 2 π L 2 C 2 . Для понижающего высокочастотного резонансного трансформатора Тесла 15 индуктивность L3 низковольтной обмотки 21 и емкость C3 емкости 22, а также индуктивность L4 высоковольтной обмотки 17 и емкость C4 естественной емкости выбирают таким образом, что выполняется условие

f 0 = 1 2 π L 1 C 1 = 1 2 π L 2 C 2 = 1 2 π L 3 C 3 = 1 2 π L 4 C 4 .

Передаваемая мощность и дальность передачи электрической энергии увеличивается с увеличением диаметра естественных емкостей 7, 30, 18 и их высоты над уровнем моря h1, h3, h4. С увеличением глубины погружения h2 кабеля 11 в морскую среду 8 увеличивается глубина распространения электромагнитных колебаний в морской среде 8.

Электромагнитные колебания с частотой f0 усиливают по напряжению в резонансном трансформаторе Тесла 4 и распространяют по воздуху и по морской воде 8, образуя стационарные волны с длиной волны λ C f 0 ,

где C - скорость распространения электромагнитной волны в морской среде 8.

Понижающий высокочастотный резонансный трансформатор Тесла 15 воспринимает электромагнитные колебания с резонансной частотой f0 в последовательном резонансном контуре L4C4, усиливает их по току в контуре L3C3 и передает через инвертор 23 в электрическую нагрузку 24.

Пример выполнения способа и устройства для передачи электрической энергии.

Пример 1. На берегу 9 моря 8 (фиг.1) установлен контейнер 12, содержащий источник энергии 1, выполненный в виде дизельной электростанции максимальной мощностью 10 МВт с преобразователем частоты 50 Гц/1 кГц (на фиг.1 не показаны), который через резонансную емкость 2 подключен к высокочастотному резонансному повышающему трансформатору Тесла 4, у которого последовательные резонансные контуры низковольтной обмотки 3 и высоковольтной обмотки 6 настроены на резонансную частоту 1 кГц. Диаметр сферической емкости 7 составляет 25 м, высота расположения сферической емкости h1 100 м, напряжение на сферической емкости 1000 кВ. Понижающий высокочастотный резонансный трансформатор Тесла 15 с резонансной частотой 1 кГц установлен на подводном корабле 13 на расстоянии 500 км от берега 9 в морской среде 8 на глубине 100 м. Диаметр сферической емкости 18 понижающего трансформатора составляет 2,5 м, напряжение на выходе трансформатора 15 220 В, электрическая мощность на нагрузке 24 100 кВт, которая используется для зарядки аккумулятора электрической энергии (на фиг.1 не показан) для питания силовой установки подводного корабля 13.

Пример 2. Контейнер 12 с высокочастотным источником энергии 1 с резонансной частотой f0=5 кГц, резонансной емкостью 2 и повышающим высокочастотным резонансным трансформатором Тесла 4 установлен на борту надводного корабля 27 (фиг.3). Максимальная электрическая мощность источника энергии 1 5 МВт, резонансная частота f0=5 кГц, диаметр тороидальной естественной емкости 6 м, высота расположения естественной емкости 7 регулируется в пределах h4=2-20 м в зависимости от дальности передачи энергии и передаваемой мощности. Напряжение на естественной емкости 750 кВ. Понижающий резонансный высокочастотный трансформатор Тесла 15 с резонансной частотой 5 кГц установлен на другом надводном корабле 29 на расстоянии 100 км. Диаметр тороидального конденсатора естественной емкости 18 составляет 6 м, напряжение на выходе понижающего трансформатора Тесла 15 220 В, электрическая мощность на нагрузке 100 кВт.

Способ и устройство передачи электрической энергии в морской среде при использовании стационарных волн тока и напряжения характеризуется низкими потерями, так как при отсутствии потребления энергии в нагрузке в режиме холостого хода потери мощности составляют 10-20 кВт, и энергия колебаний расходуется в тех районах морской среды 11, где на кораблях установлены понижающие высокочастотные резонансные трансформаторы Тесла 15 и имеет место потребление электрической энергии в нагрузке кораблей.

1. Способ передачи электрической энергии с использованием проводящего канала из вещества в жидкой фазе и создания резонансных колебаний повышенной частоты в цепи, состоящей из источника энергии с повышающим высокочастотным трансформатором Тесла и резонансным контуром в низковольтной обмотке, проводящего канала и понижающего высокочастотного трансформатора Тесла с резонансным контуром в низковольтной обмотке, передачи электрической энергии вдоль проводящего канала к понижающему высокочастотному резонансному трансформатору Тесла, снижения потенциала высоковольтных колебаний и передачи электрической энергии через инвертор к электрической нагрузке, отличающийся тем, что в высоковольтных обмотках повышающего и понижающего высокочастотного резонансного трансформатора Тесла создают последовательные резонансные контуры путем соединения высокопотенциальных выводов высоковольтных обмоток трансформаторов Тесла с естественной емкостью, выполненной в виде сферы, тороида или проводящего тела произвольной формы, настраивают последовательные резонансные контуры в высоковольтных обмотках на общую резонансную частоту контуров в низковольтных обмотках трансформаторов Тесла, размещают понижающий резонансный трансформатор, инвертор и электрическую нагрузку на морском подводном или надводном корабле, соединяют низкопотенциальные выводы высоковольтных обмоток обоих трансформаторов с морской средой, повышают напряжение на повышающем трансформаторе Тесла и создают стационарные волны колебаний электромагнитной энергии в морской среде с резонансной частотой f 0 = 1 2 π L 1 C 1 = 1 2 π L 2 C 2 = 1 2 π L 3 C 3 = 1 2 π L 4 C 4 ,
где L1C1, L2C2 - индуктивности и емкости резонансных контуров в низковольтной и высоковольтной обмотках повышающего высокочастотного резонансного трансформатора Тесла, L3C3, L4C4 - индуктивности и емкости резонансных контуров низковольтной и высоковольтной обмоток понижающего высокочастотного резонансного трансформатора Тесла.

2. Способ передачи электрической энергии на морские и океанские надводные и подводные корабли по п.1, отличающийся тем, что источник энергии с повышающим высокочастотным резонансным трансформатором Тесла устанавливают на берегу моря или океана.

3. Способ передачи электрической энергии на морские и океанские надводные и подводные корабли по п.1, отличающийся тем, что источник энергии с повышающим высокочастотным резонансным трансформатором Тесла устанавливают на надводном морском и океанском корабле.

4. Способ передачи электрической энергии на морские и океанские надводные и подводные корабли по п.1, отличающийся тем, что источник энергии с повышающим высокочастотным резонансным трансформатором Тесла устанавливают на подводном морском или океанском корабле.

5. Устройство для передачи электрической энергии, содержащее источники и приемники электрической энергии с проводящими каналами между ними из вещества в виде жидкой фазы, каждый источник электрической энергии соединен с проводящим каналом через повышающий высокочастотный резонансный трансформатор Тесла, а каждый приемник с противоположной стороны проводящего канала соединен с ним через понижающий высокочастотный резонансный трансформатор Тесла, отличающееся тем, что каждый высокочастотный трансформатор Тесла имеет два резонансных последовательных контура с общей резонансной частотой f 0 = 1 2 π L 1 C 1 = 1 2 π L 2 C 2 = 1 2 π L 3 C 3 = 1 2 π L 4 C 4 ,
где L1C1 и L2C2 - индуктивности и емкости резонансных контуров в низковольтной и высоковольтной обмотках повышающего трансформатора Тесла, L3C3 и L4C4 - индуктивности и емкости резонансных контуров низковольтной и высоковольтной обмоток понижающего трансформатора Тесла, L1 и L3 - индуктивности низковольтных обмоток, C1 и C3 - емкости конденсаторов, последовательно включенных с низковольтными обмотками, L2 и L4 - индуктивности высоковольтных обмоток, естественные емкости конденсаторов C2 и C4 выполнены в виде сферы, тороида или проводящего тела произвольной формы и соединены с высокопотенциальными выводами высоковольтных обмоток высокочастотных резонансных трансформаторов Тесла, низкопотенциальные выводы высоковольтных обмоток высокочастотных резонансных трансформаторов Тесла соединены изолированными кабельными линиями с морской средой, приемник энергии с понижающим высокочастотным резонансным трансформатором Тесла установлен в море или океане на подводном и/или надводном корабле.

6. Устройство для передачи электрической энергии по п.5, отличающееся тем, что источник энергии с повышающим высокочастотным резонансным трансформатором Тесла размещен на берегу моря или океана.

7. Устройство для передачи электрической энергии по п.6, отличающееся тем, что источник энергии с повышающим высокочастотным резонансным трансформатором Тесла размещен на надводном морском или океанском корабле.

8. Устройство для передачи электрической энергии по п.6, отличающееся тем, что источник энергии с повышающим высокочастотным резонансным трансформатором Тесла размещен на подводном морском или океанском корабле.



 

Похожие патенты:

Изобретение относится к бесконтактной подаче питания и включает в себя вторичную обмотку, к которой подается питание из первичной обмотки посредством источника питания переменного тока.

Изобретение основано на оптическом соединении высоковольтного источника Тесла с потребителем электрической энергии путем направления лазерного луча на потребитель электрической энергии, фотоионизации атмосферы на пути распространения лазерного луча путем увеличения энергии лазерного излучения до энергии фотоионизации составляющих атмосферного воздуха в лазерном луче и после образования в лазерном луче токопроводящего канала - резонансной передаче по нему электрической энергии напряжением десятки ÷ сотни киловольт с использованием резонансного трансформатора Тесла.

Изобретение относится к аппаратуре беспроводной передачи энергии транспортному средству. Технический результат - устранение необходимости наличия датчика расстояния между передатчиком и приемником энергии.

Изобретение относится к области электротехники, в частности к способам и устройствам для передачи электрической энергии. В способе передачи электрической энергии между источником и потребителем энергии с использованием в качестве проводящего канала трубопровода с жидким веществом путем формирования в электроизоляционной оболочке трубопровода электропроводящего канала из вещества в жидкой фазе и создания резонансных колебаний повышенной частоты в цепи, состоящей из высокочастотного преобразователя, повышающего резонансного трансформатора Тесла, электропроводящего канала из электроизолированного трубопровода с жидким веществом, понижающего резонансного трансформатора Тесла, передачи электрической энергии вдоль проводящего канала к понижающему резонансному трансформатору Тесла, понижения потенциала высоковольтных колебаний и передачи энергии через инвертор к нагрузке, электрическую энергию передают по трубопроводу, установленному в водной среде, электроизолированную оболочку трубопровода с внутренним встроенным экраном заполняют водой с повышенным содержанием соли, опускают трубопровод в водную среду и соединяют начало и конец проводящего канала изолированными кабелями с высоковольтными выводами повышающего и понижающего трансформатора Тесла.

Использование: в области электротехники для доставки энергии на космические объекты в непрерывном режиме. Технический результат - расширение возможностей энергообеспечения космических объектов.

Изобретение относится к бесконтактному питающему оборудованию. Технический результат - предотвращение избыточного потребления энергии и исключение потребности в контроллере переключения.

Изобретение относится к электротехнике, к системам передачи энергии. Технический результат состоит в повышении эффективности передачи электроэнергии.

Изобретение относится к области электротехники, в частности к способам беспроводной передачи электроэнергии. Технический результат - возможность передавать магнитную индукцию в непроводящей газовой среде дистанционно, без использования специально сооружаемых для этого магнитопроводов.

Изобретение относится к области электротехники и может быть использовано для обеспечения гарантированного беспроводного питания и зарядки различных устройств, например для беспроводной зарядки маломощных электроприборов (телефон, фотоаппарат, камеры, игрушки, сувениры), в квартире, офисе, общественном здании.

Ректенна // 2505907
Изобретение относится к радиотехнике и может быть использовано в системах беспроводной передачи энергии на расстояние. Технический результат - повышение эффективности приема энергии в тепловом диапазоне ректенн.

Изобретение относится к бесконтактному зарядному устройству. Бесконтактное зарядное устройство содержит устройство приема мощности, содержащее катушку; аккумулятор; модуль определения состояния заряда аккумулятора; модуль задания допустимого диапазона для процесса заряда; модуль управления зарядом для управления мощностью процесса заряда для аккумулятора и дисплей для отображения допустимого диапазона для процесса заряда. Модуль задания допустимого диапазона для процесса заряда задает допустимый диапазон для процесса заряда шире по мере того, как состояние заряда выше. Повышается удобство пользования. 5 з.п. ф-лы, 19 ил.

Изобретение относится к технике передачи электроэнергии. Технический результат состоит в передаче энергии по воздушному каналу. Для этого устройство содержит передающий и приемный модули электрической энергии Тесла, соединенные между собой лазерной линией резонансной передачи электрической энергии. Линия включает токосъемные электроды, установленные соосно на передающем и приемном модулях соответственно, и лазерный ионизатор атмосферного воздуха, установленный на передающем модуле соосно с электродом. Ионизатор выполнен многочастотным, содержит как минимум два импульсных полупроводниковых лазера, блок сведения лучей лазеров и оптическую линзу, установленную соосно с токосъемным электродом. Лазеры выполнены полупроводниковыми соответственно с частотами ν1 и ν2 в полосе частот прозрачности атмосферы. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области электротехники. Установка бесконтактной подачи энергии одного варианта осуществления предоставлена с резонансным блоком для передачи энергии и резонансным блоком для приема энергии, который магнитным образом связывается с резонансным блоком для передачи энергии с помощью резонанса в магнитном поле. Энергия от источника энергии подается резонансному блоку для приема энергии через резонансный блок для передачи энергии, причем резонансный блок для передачи энергии и резонансный блок для приема энергии магнитным образом связаны посредством резонанса в магнитном поле. Один из резонансного блока для передачи энергии и резонансного блока для приема энергии имеет предварительно определенную единственную резонансную частоту, а другой из них имеет множество резонансных частот, в том числе предварительно определенную единственную резонансную частоту. Технический результат - повышение эффективности передачи энергии. 4 н. и 6 з.п. ф-лы, 17 ил.

Изобретения относятся к устройствам для генерации магнитного поля с контролируемым направлением в заранее заданной области пространства и могут быть использованы, в частности, в системах беспроводной передачи энергии. Технический результат - упрощение конструкции в результате отказа от применения магнитных материалов. Устройство состоит из трех компланарных индукторов, образующих планарную структуру, и блока управления величиной токов в индукторах, причем устройство отличается тем, что планарные индукторы имеют такую геометрию и расположены таким образом, что векторы генерируемого ими магнитного поля образуют полный трехмерный базис в заданной области пространства, расположенной вблизи структуры на расстоянии, не превышающем ее максимального геометрического размера. 2 н. и 3 з.п. ф-лы, 6 ил.

Изобретение относится к электротехнике. Технический результат состоит в повышении эффективности. Устройство бесконтактной подачи электричества бесконтактным образом выполняет заряд аккумуляторной батареи (28) транспортного средства, снабжено катушкой (12) для передачи электричества, расположенной на поверхности дороги, и катушкой (22) для приема электричества, расположенной в транспортном средстве. Катушка (13) для обнаружения постороннего объекта предусмотрена на верхней поверхности катушки (12) для передачи электричества, и на основе индуцированного напряжения, возникающего в катушке (13) для обнаружения постороннего объекта во время пробной подачи напряжения, обнаруживаются посторонние объекты между катушкой (12) для передачи электричества и катушкой (22) для приема электричества. 9 з.п. ф-лы, 13 ил.

Группа изобретений относится к наземным сооружениям для привязных летательных аппаратов. Первый вариант способа электроснабжения воздушного летательного аппарата с удерживающим тросом характеризуется тем, что передачу электроэнергии с земли осуществляют повышенным напряжением 0,1…10 кВ постоянного тока путем преобразования напряжения источника питания на земле по напряжению с 12…380 В до 0,1…10 кВ и передачи по линии электропередачи с дальнейшим преобразованием напряжения 0,1…10 кВ до 12…380 В. Второй вариант способа характеризуется тем, что передачу электроэнергии с земли осуществляют резонансным способом на повышенной частоте 1…25 кГц путем преобразования напряжения источника питания на земле по напряжению и частоте с 12…380 В до 0,1…10 кВ, 1…25 кГц и передачи по линии электропередачи с дальнейшим преобразованием напряжения кабельной линии 0,1…10 кВ до 12…380 В. Каждый вариант устройства электроснабжения характеризуется использованием соответствующих преобразователей напряжения. Группа изобретений направлена на увеличение дальности и высоты электроснабжения. 4 н.п. ф-лы, 2 ил.

Изобретение относится к устройствам бесконтактной подачи энергии и предназначено для зарядки аккумулятора транспортного средства. Технический результат - повышение эффективности заряда. Устройство содержит: схему передачи электричества, содержащую катушку для передачи электричества; и зарядную схему, содержащую катушку для приема электричества. Энергия передается бесконтактно из катушки для передачи электричества в катушку для приема электричества. Когда транспортное средство приближается к устройству подачи энергии, выполняется пробная подача электричества, при которой передаются незначительные величины энергии, и на основе тока, протекающего через схему передачи электричества, оценивается эффективность передачи электричества из катушки для передачи электричества в катушку для приема электричества. Из эффективности передачи электричества определяется то, находится или нет катушка для приема электричества в заряжаемом диапазоне катушки для передачи электричества. 5 з.п. ф-лы, 6 ил.

Изобретение относится к управлению крутящим моментом и системе бесконтактной зарядки. Устройство управления крутящим моментом содержит средство обнаружения угла открытия акселератора; средство задания крутящего момента, приводящего в движение транспортное средство; и средство управления крутящим моментом для коррекции крутящего момента. Крутящий момент приведения в движение транспортного средства становится относительно небольшим, когда позиция транспортного средства приближается к позиции парковки. Система бесконтактной зарядки, осуществляющая энергоснабжение бесконтактно посредством магнитного взаимодействия между катушкой приема энергии в транспортном средстве и катушкой передачи энергии в устройстве зарядки на стороне земли, причем устройство зарядки содержит: блок зарядки; средство обнаружения позиции между катушкой передачи энергии и катушкой приема энергии и средство передачи сигнала позиции. Транспортное средство содержит батарею, заряжаемую электроэнергией, принимаемой посредством приемной катушки. Упрощается позиционирование ТС к позиции парковки. 2 н. и 6 з.п. ф-лы, 8 ил.

Изобретение относится к устройствам индукционной передачи энергии и информации. Технический результат - повышение эффективности передачи при работе через барьер. Для этого предложен способ повышения эффективности передачи энергии системы беспроводной индукционной передачи энергии и/или данных, содержащей передатчик магнитного поля, который расположен на первой стороне барьера, и приемник магнитного поля, который расположен на второй стороне барьера напротив первой стороны, содержит этапы, на которых размещают, по меньшей мере, один элемент протекания потока в или смежно с барьером, по меньшей мере, частично между передатчиком и приемником. Элемент протекания потока имеет магнитную проницаемость, отличающуюся от магнитной проницаемости барьера. Как результат элемент протекания потока повышает величину магнитного потока, сгенерированного посредством передатчика, который проходит через барьер и в приемник. 2 н. и 38 з.п. ф-лы, 15 ил.

Изобретение относится к системам низкочастотных антенн, имеющих улучшенную направленность излучения. Техническим результатом является создание низкочастотной антенны, имеющей улучшенные рабочие характеристики, а именно обеспечение коэффициента сжатия волны больше единицы без изменения полного волнового сопротивления оболочки при переходе от ее внутренней части к внешней, которые реализуются посредством того, что структура или материал внешней части оболочки антенны выбраны так, что отношение магнитной проницаемости внешней части оболочки к диэлектрической проницаемости внешней части оболочки остается постоянным в пределах внешней части оболочки и равным отношению магнитной проницаемости внешней среды к диэлектрической проницаемости внешней среды. Предложена низкочастотная антенна, предназначенная для излучения/приема электромагнитной волны. Антенна содержит питаемый вход, выполненный с возможностью соединения с линией передачи, провод антенны, соединенный с питаемым входом, и оболочку, по меньшей мере частично окружающую провод антенны. Оболочка антенны содержит внутреннюю часть, примыкающую к проводу антенны, и внешнюю часть, примыкающую к внутренней части и имеющую периферию, внутренняя часть оболочки имеет такую структуру или выполнена из такого материала, что каждая из величин магнитной проницаемости внутренней части оболочки, проводимости внутренней части оболочки и диэлектрической проницаемости внутренней части оболочки постоянна в пределах внутренней части. 5 н. и 54 з.п. ф-лы, 10 ил.
Наверх