Способ управления подвижным объектом




Владельцы патента RU 2538315:

федеральное государственное автономное образовательное учреждение высшего профессионального образования "Южный федеральный университет" (Южный федеральный университет) (RU)

Изобретение относится к системам управления и может быть использовано при разработке систем управления подвижными объектами, обеспечивающих их перемещение по заданной траектории с заданной скоростью в неопределенных средах. Техническим результатом является уменьшение отклонения фактической траектории объекта управления от заданной и сокращение затрат времени на реализацию заданной траектории. В известном способе управления подвижным объектом дополнительно измеряют диапазон Δφ изменения угла визирования ближайшего препятствия, неожиданно возникшего на пути следования объекта управления, обусловленный размерами этого препятствия и его угловыми флюктуациями, и в случае, если направление вектора внешней скорости объекта управления попадает в этот диапазон, изменяют его направление таким образом, чтобы оно вышло из диапазона Δφ за минимально возможное время.

 

Изобретение относится к системам управления и может быть использовано при разработке систем управления подвижными объектами, обеспечивающими их перемещение вдоль заданной траектории с заданной траекторной скоростью, или в заданную точку вдоль заданной траектории без предъявления требований к траекторной скорости, или в заданную точку с нулевой конечной скоростью.

Известен способ управления движением манипуляционного робота, приведенный в описании устройства, защищенного патентом РФ №2146606, кл. G05B 11/10, G05B 25, G05J 13/10, 2000. Этот способ содержит измерение обобщенных координат манипуляционного робота и их производных, преобразование их во внешние координаты, формирование вектора нелинейных элементов, формирование матрицы коэффициентов управления, формирование матриц квадратичных и линейных форм внешних координат, формирование первой и второй диагональных матриц постоянных коэффициентов, формирование вектора внешних скоростей и расчет на основе сформированных матриц и векторов матричных коэффициентов и вектора управления.

Признаками этого аналога, совпадающими с признаками заявляемого способа, являются формирование вектора нелинейных элементов, формирование матрицы коэффициентов управления, формирование векторов и матриц квадратичных и линейных форм внешних координат, формирование первой и второй диагональных матриц постоянных коэффициентов и формирование вектора внешних скоростей.

Причиной, препятствующей получению в этом аналоге технического результата, достигаемого в изобретении, является то обстоятельство, что в данном способе вычисление матричных коэффициентов осуществляется на основе измерения обобщенных координат управляемого объекта и их производных, что обеспечивает управление движением рабочего органа манипуляционного робота. На практике зачастую возникает необходимость управления подвижным (мобильным) объектом. Эту функцию данный способ реализовать не позволяет.

Более близким по технической сущности к заявляемому является способ управления подвижным объектом, описанный в работе [В.Х. Пшихопов "Аналитический синтез синергетических регуляторов для позиционно-траекторных систем управления мобильными роботами". Материалы XI научно-технической конференции " Экстремальная робототехника". Под научной редакцией проф. Е.И. Юревича. С-Пб, издательство С-ПбГТУ, 2000].

Этот способ заключается в следующем.

Измеряют внутренние координаты управляемого объекта. Измеряют его внешние координаты и их производные. Формируют вектор F и матрицу B нелинейного преобразования внутренних координат. Формируют вектор M внешних скоростей. Формирую матрицу - производную R вектор-столбца внешних скоростей по вектор-строке внутренних координат. Формируют матрицу - производную L вектор-столбца внешних скоростей по вектор-строке внешних координат. Формируют матрицы N1j, N2j и N3j - квадратичных форм и линейных форм внешних координат, где j = 1 , n ¯ , а n - число измеряемых внутренних координат управляемого объекта. Формируют первую А и вторую С диагональные матрицы постоянных коэффициентов размерностью n×n. Формируют первый матричный коэффициент K1 в соответствии с уравнением:

K 1 = C A [ D i N 2 n + 2 M T E ] ,

где D i = 2 Y T N 1 i + N 2 i - первая вспомогательная матрица,

Y - вектор измеряемых внешних координат, размерностью 6≥m≥n,

Е - единичная матрица размерностью m×m;

Т - символ операции транспонирования,

i = 1 , n 1 ¯ .

Формируют второй матричный коэффициент K2 в соответствии с уравнением:

K 2 = [ C + A ] [ D j ] + C A [ 2 M T N 1 i 0 1 ] ,

где Dj - вторая вспомогательная матрица,

01 - вектор нулевых элементов размерностью n.

Формируют третий матричный коэффициент K3 в соответствии с уравнением:

K 3 = [ Y * T N 1 j Y * + N 2 j Y * + N 3 j ] + A [ 0 1 V k 2 ] ,

где Vk - заданная траекторная (контурная) скорость.

Формируют вектор управления U в соответствии с уравнением:

U = [ K 1 R B ] 1 [ K 1 R F + [ K 2 + K 1 L ] M + K 3 ] .

Все перечисленные признаки (действия) этого способа совпадают с существенными признаками заявляемого способа.

Причиной, препятствующей достижению в этом способе технического результата, обеспечиваемого заявляемым способом, являются ограниченные функциональные возможности. В частности, движение управляемого объекта в этом способе ограничивается маршрутами, не содержащими препятствий, либо содержащими только неподвижные и заранее известные препятствия. Это обусловлено тем, что способ требует предварительного картографирования области функционирования подвижного объекта и расчета такой траектории движения управляемого объекта в заданную точку пространства, которая обеспечивала бы обход препятствия и достижение управляемым объектом заданной точки позиционирования.

Наиболее близким по технической сущности к заявляемому (прототипом) является способ управления подвижным объектом, защищенный патентом РФ №2450308, кл. G05D 1/00, G05B 19/19. Он содержит все изложенные выше действия второго аналога (способа, описанного в материалах XI научно-технической конференции "Экстремальная робототехника"). Кроме того, в соответствии с этим способом в процессе управления постоянно измеряют расстояние r между управляемым объектом и ближайшим препятствием на пути его движения и при выполнении условия r≤rдоп, где rдоп - минимально допустимая дистанция сближения объекта управления с препятствием, изменяют знак одного из элементов матриц A или C на противоположный.

В результате объект управления переходит в режим неустойчивого по расстоянию до препятствия движения до выхода в зону, свободную от препятствий, после чего планировщик системы управления рассчитывает новую траекторию. Затем рассчитывают новый сигнал управления, обеспечивающий разворот (доворот) объекта управления до направления на целевую точку и движение его по вновь спланированной траектории.

Все описанные признаки прототипа за исключением изменения знаков элементов матриц A или C совпадают с существенными признаками заявляемого способа.

Причиной, препятствующей достижению в способе-прототипе технического результата, обеспечиваемого заявляемым способом, является погрешность реализации заданной траектории объекта управления в случае неожиданного возникшего препятствия на пути его следования. Дело в том, что в этом случае в способе-прототипе препятствие в принципе хотя и преодолевается, однако при этом объект управления, по сути, сталкивается с препятствием, затем его вновь возвращают на дальность, превышающую величину rдоп, и затем совершают новую попытку обойти препятствие стороной с определенным радиусом разворота.

Эти обстоятельства вызывают существенные отклонения траектории объекта управления от заданной и значительные затраты времени на реализацию объектом управления заданной траектории.

Технической задачей, на решение которой направлено изобретение, является уменьшение отклонения фактической траектории объекта управления от заданной и сокращение затрат времени на реализацию заданной траектории.

Технический результат достигается тем, что в известном способе управления подвижным объектом, защищенном патентом РФ №2450308, дополнительно измеряют диапазон Δφ изменения угла визирования ближайшего препятствия, неожиданно возникшего на пути следования объекта управления, обусловленный размерами этого препятствия и его угловыми флюктуациями, и в случае, если направление вектора скорости объекта управления попадает в этот диапазон, изменяют его направление таким образом, чтобы оно вышло из диапазона Δφ с минимальным отклонением от заданной траектории.

Для достижения технического результата в известном способе управления подвижным объектом, основанном на измерении внутренних координат управляемого объекта, измерении его внешних координат и их производных, формировании вектора F и матрицы B нелинейного преобразования внутренних координат, формировании вектора M внешних скоростей, формировании матрицы - производной R вектор-столбца внешних скоростей по вектор-строке внутренних координат, формировании матрицы - производной L вектор-столбца внешних скоростей по вектор-строке внешних координат, формировании матриц N1j, N2j, N3j квадратичных форм от внешних координат, где j = 1 , n ¯ , а n - число измеряемых внутренних координат, формировании первой A и второй C диагональных матриц постоянных коэффициентов размерностью n×n, формировании первого матричного коэффициента K1 в соответствии с уравнением:

K 1 = C A [ D i N 2 n + 2 M T E ] ,

где D i = 2 Y T N 1 i + N 2 i - первая вспомогательная матрица,

Y - вектор измеряемых внешних координат, размерностью m≥n,

Е - единичная матрица размерностью m×m;

Т - символ операции транспонирования,

i = 1 , n 1 ¯ ,

формируют второй матричный коэффициент K2 в соответствии с уравнением:

K 2 = [ C + A ] [ D j ] + C A [ 2 M T N 1 i 0 1 ] ,

где Dj - вторая вспомогательная матрица,

01 - вектор нулевых элементов размерностью n,

формировании третьего матричного коэффициента K3 в соответствии с уравнением:

K 3 = [ Y * T N 1 j Y * + N 2 j Y * + N 3 j ] + A [ 0 1 V k 2 ] ,

где Vk - заданная траекторная (контурная) скорость,

формируют вектор управления U в соответствии с уравнением:

U = [ K 1 R B ] 1 [ K 1 R F + [ K 2 + K 1 L ] M + K 3 ] .

постоянном измерении в процессе управления расстояния r между управляемым объектом и ближайшими препятствиями на пути следования объекта управления, проверке выполнения условия r≤rдоп, где rдоп - минимально допустимая дистанция сближения объекта управления с препятствием, дополнительно измеряют диапазон Δφ изменения угла визирования ближайшего препятствия, неожиданно возникшего на пути следования объекта управления, обусловленный размерами этого препятствия и его угловыми флюктуациями, и в случае, если направление вектора скорости объекта управления попадает в этот диапазон, изменяют его направление таким образом, чтобы оно вышло из диапазона Δφ с минимальным отклонением от заданной траектории.

Исследование заявленного способа управления по патентной и научно-технической литературе показало, что совокупность вновь введенных действий над материальными объектами вместе с остальными действиями способа-прототипа не поддается самостоятельной классификации. В то же время она не следует явным образом из уровня техники. Поэтому предлагаемый способ следует считать удовлетворяющим критерию "новизна" и имеющим изобретательский уровень.

В соответствии с предлагаемым способом осуществляют следующие действия над объектом управления и другими материальными объектами.

1. Измеряют внутренние координаты Z управляемого объекта.

2. Измеряют его внешние координаты Y и их производные Y ˙ .

3. Формируют матрицы N1j, · N2j, · N3j квадратичных форм, где j = 1 , n ¯ , а n - число измеряемых координат.

4. Формируют первую А и вторую С диагональные матрицы постоянных коэффициентов размерностью n×n.

5. Формируют вторую вспомогательную матрицу Dj в соответствии с уравнением:

6. Формируют вектор M внешних скоростей, вектор F и матрицу B нелинейного преобразования внутренних координат.

7. Формируют матрицу - производную R вектор-столбца внешних скоростей по вектор-строке внутренних координат.

8. Формируют матрицу - производную L вектор-столбца внешних скоростей по вектор-строке внешних координат.

9. Формируют первый матричный коэффициент K1 в соответствии с уравнением:

K 1 = C A [ D i N 2 n + 2 M T E ] ,

где D i = 2 Y T N 1 i + N 2 i - первая вспомогательная матрица,

Y - вектор измеряемых внешних координат, размерностью m≥n,

Е - единичная матрица размерностью m×m;

Т - символ операции транспонирования,

i = 1 , n 1 ¯ .

10. Формируют второй матричный коэффициент K2 в соответствии с уравнением:

K 2 = [ C + A ] [ D j ] + C A [ 2 M T N 1 i 0 1 ] ,

где 01 - вектор нулевых элементов размерностью n.

11. Формируют третий матричный коэффициент K3 в соответствии с уравнением:

K 3 = [ Y * T N 1 j Y * + N 2 j Y * + N 3 j ] + A [ 0 1 V k 2 ] ,

где Vk - заданная траекторная (контурная) скорость.

12. Формируют вектор управления U в соответствии с уравнением:

U = [ K 1 R B ] 1 [ K 1 R F + [ K 2 + K 1 L ] M + K 3 ] .

Описанный до сих пор алгоритм (порядок действий над входящими в состав реализуемой предлагаемым способом системы управления материальными объектами), в том числе и сигнал U управления полностью соответствует алгоритму управления, приведенному в материалах XI научно-технической конференции "Экстремальная робототехника". Он соответствует движению мобильного (подвижного) объекта вдоль заданной траектории.

13. В процессе управления постоянно измеряют расстояние r между управляемым объектом и ближайшими препятствиями на пути следования объекта управления.

14. Проверяют выполнение условия r≤rдоп, где rдоп - минимально допустимая дистанция сближения объекта управления с препятствием.

15. В способе-прототипе в случае выполнения этого условия изменяют знак одного из элементов матриц А или С на противоположный. Как отмечалось выше, в результате объект управления переходит в режим неустойчивого движения до выхода в зону, свободную от препятствий, и осуществляет «доворот» до направления на целевую точку. В случае неожиданного появления препятствия на пути следования объекта управления осуществляется существенное отклонение траектории объекта управления от заданной и увеличение соответствующих затрат времени на ее реализацию.

16. В предлагаемом же способе в случае выполнения условия r≤rдоп знаков элементов матриц А или С не изменяют, а для предотвращения столкновения с неожиданно появившимся препятствием дополнительно измеряют диапазон Δφ изменения угла визирования ближайшего препятствия, неожиданно возникшего на пути следования объекта управления, обусловленный размерами этого препятствия и его угловыми флюктуациями. При этом, в случае, если направление вектора М внешней скорости объекта управления попадает в этот диапазон, принимают срочные меры для вывода направления вектора M из диапазона Δφ, причем направление вывода выбирают таким, чтобы он осуществлялся за минимально возможное время.

В результате минимальным будет фактическое отклонение положения целевой точки от требуемого.

Таким образом, заявляемый способ, как и способ-прототип, обеспечивает достижение объектом управления заданной точки пространства и в случае неопределенной среды, при появлении незапланированных препятствий на заданной траектории движения объекта. Однако фактическое отклонение траектории движения объекта управления от заданной и фактические затраты времени на реализацию этой траектории в заявляемом способе значительно меньше, чем в способе-прототипе.

Предлагаемый способ достаточно легко реализуем

В качестве средства для измерения расстояний r до препятствий на пути следования объекта управления и диапазона Δφ углов визирования ближайшего препятствия в горизонтальной и вертикальной плоскостях может служить координатор активной радиолокационной доплеровской головки самонаведения, защищенной патентом РФ №2313054, кл. F41G 7/22, 2006, реализующий высокое разрешение целей и точность определения их дальности и угловых координат.

Остальные средства реализации предлагаемого способа могут быть выполнены на основе тех же средств, что и способ-прототип.

Способ управления подвижным объектом, основанный на измерении внутренних координат управляемого объекта, измерении его внешних координат и их производных, формировании вектора F и матрицы в нелинейного преобразования внутренних координат, формировании вектора М внешних скоростей, формировании матрицы - производной R вектор-столбца внешних скоростей по вектор-строке внутренних координат, формировании матрицы - производной L вектор-столбца внешних скоростей по вектор-строке внешних координат, формировании матриц N1j, N2j, N3j квадратичных форм от внешних координат, где , а n - число измеряемых внутренних координат, формировании первой A и второй C диагональных матриц постоянных коэффициентов размерностью n×n, формировании первого матричного коэффициента K1 в соответствии с уравнением:
,
где - первая вспомогательная матрица,
Y - вектор измеряемых внешних координат, размерностью m≥n,
Е - единичная матрица размерностью m×m;
Т - символ операции транспонирования,
.
формировании второго матричного коэффициента K2 в соответствии с уравнением:
,
где Dj - вторая вспомогательная матрица,
01 - вектор нулевых элементов размерностью n,
формировании третьего матричного коэффициента K3 в соответствии с уравнением:
,
где Vk - заданная траекторная (контурная) скорость,
и формировании вектора управления U в соответствии с уравнением:
,
постоянном измерении в процессе управления расстояния r между управляемым объектом и ближайшими препятствиями на пути следования объекта управления, проверке выполнения условия r≤rдоп, где rдоп - минимально допустимая дистанция сближения объекта управления с препятствием, отличающийся тем, что дополнительно измеряют диапазон Δφ изменения угла визирования ближайшего препятствия, неожиданно возникшего на пути следования объекта управления, обусловленный размерами этого препятствия и его угловыми флюктуациями, и в случае, если направление вектора M внешней скорости объекта управления попадает в этот диапазон, изменяют его направление таким образом, чтобы оно вышло из диапазона Δφ за минимально возможное время.



 

Похожие патенты:

Изобретение относится к электронному оборудованию автотранспортных средств и может быть использовано в бортовой локальной информационно-вычислительной сети. Технический результат заключается в повышении безопасности движения транспортного средства.

Изобретение относится к системам управления движением подводных аппаратов. Устройство содержит установленные на подводном аппарате (1) движители вертикального (2) и горизонтального (3) перемещений, телекамеру (4), выполненную с возможностью поворота, датчик (5) положения угла поворота телекамеры, первый (6), второй (7) и третий (8) нелинейные функциональные преобразователи, блок (9) управления движителями, датчик (10) расстояния, вручную коммутируемый ключ (11), пороговый элемент (12), электронно-управляемый переключатель (13).

Группа изобретений относится к космическим системам (КС) обслуживания спутниковых систем (СС) различного назначения (мониторинга, навигации, связи и др.). Предлагаемая КС содержит средства обслуживания на орбитах базирования, каждой из которых поставлена в соответствие своя область обслуживания.

Группа изобретений относится к информационным спутниковым системам (ИСС) различного назначения, задачи которых в общем аспекте сводятся к обеспечению обзора (непрерывного или периодического) планеты, в частности Земли.

Настоящее изобретение относится в целом к погрузочно-разгрузочным устройствам и в частности к системам и способам, объединяющим данные по зонам обнаружения в дополнительные беспроводные средства дистанционного управления погрузочно-разгрузочными устройствами.

Изобретение относится к устройствам управления для бортовых систем автоматического управления летательными аппаратами с реализацией режимов координированных разворотов.

Изобретение относится к бортовым устройствам для систем автоматического управления беспилотными летательными аппаратами (БПЛА). Техническим результатом является повышение устойчивости процессов управления.

Изобретение относится к системам управления и может быть использовано при разработке систем управления подвижными объектами, обеспечивающих их перемещение по заданной траектории с заданной скоростью в неопределенных средах.

Изобретение относится к области оценки функциональных возможностей движущегося тела или летательного аппарата. Технический результат заключается в оценке траектории подвижного объекта после регистрации события, или при изменении цели, для которого необходимо осуществление угловых перемещений.

Изобретение относится к автоматическому управлению движением транспортных средств вдоль заданного токонесущим проводом направления. Технический результат заключается в расширении функциональных возможностей за счет обеспечения возможности использования транспортного средства с адресацией мест его остановки.

Изобретение относится к системам управления и может быть использовано при разработке систем управления подвижными объектами, обеспечивающих их перемещение по заданной траектории с заданной скоростью в неопределенных средах.

Изобретение относится к системам управления и может быть использовано при разработке систем управления подвижными объектами, обеспечивающих их перемещение по заданной траектории с заданной скоростью в неопределенных средах.

Изобретение относится к робототехнике и может быть использовано при разработке систем управления манипуляционными роботами. .

Изобретение относится к робототехнике и может быть использовано при разработке систем управления мобильными и микророботами, обеспечивающих их перемещения по заданной траектории.

Изобретение относится к автоматике и вычислительной технике и предназначено для использовано в системах управления станков для намотки электрических катушек . .

Изобретение относится к автоматике и вычислительной технике и может найти применение в станках с ЧПУ, особенно с большим циклом подготовительных операций перед обработкой деталей.

Изобретение относится к области автоматики и вычислительной техники и может быть использовано в специализированных вычислительных устройствах, предназначенных для управления позиционированием, в частности, исполнительного устройства станка.

Изобретение относится к автоматизации листоштамповочного оборудования , и может быть применено в ав;томатцческих линиях для поперечной резки рулонной стали. .

Изобретение относится к автоматическому управлению и может быть использовано при организации систем управления приводными механизмами технологического оборудования.

Изобретение относится к способу автономного программирования манипулятора с цифровым управлением. Технический результат заключается в снижении риска возникновения сингулярности. Способ, в котором при рабочей эксплуатации своей центральной точкой инструмента (TCP) следует по меньшей мере по одной реальной траектории движения, при определенных условиях с поддержкой датчика, причем в окружении автономного программирования с пользовательским интерфейсом записаны кинематическая модель манипулятора и модель окружения манипулятора, при этом посредством окружения автономного программирования в ходе программы определения определяют, по меньшей мере, одну виртуальную траекторию движения манипулятора и относящееся к этой траектории движения пространство допусков, которое отображает отклонения траектории от виртуальной траектории движения, при этом посредством окружения автономного программирования в ходе программы проверки предварительно определенное пространство допусков проверяют по меньшей мере частично в отношении кинематических сингулярностей манипулятора и при их появлении выполняют программу сингулярности. 3 н. и 15 з.п. ф-лы, 5 ил.
Наверх