Способ получения многослойного покрытия для режущего инструмента
Владельцы патента RU 2538055:
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ульяновский государственный технический университет" (RU)
Изобретение относится к области нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Проводят вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, ниобия и молибдена при их содержании, мас.%: титан 84,5-90,0, ниобий 6,0-10,0, молибден 4,0-5,5. Затем наносят верхний слой из нитрида ниобия. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами. Первый катод выполняют составным из титана и ниобия, второй - из ниобия и располагают противоположно первому, а третий изготавливают составным из титана и молибдена и располагают между ними. Нижний слой наносят с использованием первого и третьего катодов, а верхний слой - с использованием второго катода. Повышается работоспособность режущего инструмента. 1 табл.
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.
Известен способ повышения стойкости режущего инструмента (РИ), при котором на его поверхность вакуумно-плазменным методом наносят износостойкое покрытие (ИП) из нитрида титана (TiN) (см. Табаков В.П. Работоспособность режущего инструмента с износостойкими покрытиями на основе сложных нитридов и карбонитридов титана. Ульяновск: УлГТУ, 1998. 123 с.). К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе покрытия имеют относительно низкую твердость. В результате этого покрытие в большей мере подвергается износу, в нем быстро зарождаются и распространяются трещины, приводящие к разрушению покрытия, что снижает стойкость РИ с покрытием.
Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ нанесения многослойного покрытия, состоящего из нижнего слоя нитрида титана и циркония TiZrN и верхнего слоя нитрида титана TiN, раскрытый в описании к свидетельству на полезную модель RU 27099 U1, принятый за прототип.
К причинам, препятствующим достижению указанного ниже технического результата при использовании известного режущего инструмента с покрытием, принятого за прототип, относится то, что в известном способе многослойное покрытие обладает недостаточными твердостью и остаточными сжимающими напряжениями, а следовательно, трещиностойкостью. В результате покрытие плохо сопротивляется процессам износа и разрушения и быстро разрушается при резании.
Повышение в последнее время стоимости металлорежущего инструмента и ужесточение требований к точности обрабатываемых деталей сделало еще более актуальной проблему повышения стойкости РИ. Одним из путей повышения стойкости и, как следствие, работоспособности РИ с покрытием является нанесение покрытий многослойного типа со слоями с различными физико-механическими свойствами. В двухслойном покрытии нижний слой должен обладать хорошей адгезией к инструментальной основе, высокими сжимающими напряжениями, что должно препятствовать образованию и развитию трещин в покрытии. Кроме того, создание микрослоистости приводит к увеличению его твердости и трещиностойкости и, как следствие, работоспособности РИ с покрытием.
Технический результат - повышение работоспособности РИ.
Указанный технический результат при осуществлении изобретения достигается тем, что наносят нижний слой из нитрида соединения титана, ниобия и молибдена при их соотношении, мас.%: титан 84,5-90,0, ниобий 6,0-10,0, молибден 4,0-5,5 и верхний слой из нитрида ниобия, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют составным из титана и ниобия, второй - из ниобия и располагают противоположно первому, а третий изготавливают составным из титана и молибдена и располагают между ними, причем нижний слой наносят с использованием первого и третьего катодов, а верхний слой - с использованием второго катода.
Такая структура покрытия позволяет получить более высокую твердость нижнего слоя покрытия. При этом нижний слой обладает высокими трещиностойкостью и уровнем сжимающих напряжений из-за дополнительного легирования материала слоя и наличию в их структуре микрослоистости, получаемой при нанесении покрытий по предлагаемой схеме расположения катодов.
Сущность изобретения заключается в следующем. В покрытии при резании происходят процессы трещинообразования, приводящие к его разрушению. В этих условиях покрытие должно иметь слоистую структуру для торможения трещин. Слои покрытия должны обладать высокой твердостью для повышения износо- и трещиностойкости. При этом слои многослойного покрытия должны иметь высокую прочность связи между собой, что обеспечивается их высоким сродством друг с другом из-за наличия общих элементов.
Пластины с покрытиями, полученные с отклонениями от указанной технологии получения, показали более низкие результаты.
Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип, а также двухслойное покрытие по предлагаемому способу.
Нанесение предлагаемого покрытия осуществляется следующим образом. Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки «Булат-6», снабженной тремя катодами, расположенными горизонтально в одной плоскости. При нанесении покрытия используют первый катод, изготовленный составным из титана и ниобия, второй - из ниобия и располагают противоположно первому, а третий изготавливают составным из титана и молибдена и располагают между ними.
Камеру откачивают до давления 6,65·10-3 Па, включают поворотное устройство, подают на него отрицательное напряжение 1,1 кВ, включают первый катод и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 560-580°C. Ток фокусирующей катушки 0,4 А. Затем при отрицательном напряжении 160 В, токе катушек 0,3 А и подаче реакционного газа - азота включают первый и третий катоды и осаждают нижний слой покрытия TiNbMoN толщиной 3,0 мкм. Верхний слой покрытия NbN толщиной 3,0 мкм наносят при отрицательном напряжении 160 В, токе катушек 0,3 А и включенном втором катоде и подаче реакционного газа - азота. Затем отключают испарители, подачу реакционного газа, напряжение и вращение приспособления. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.
Микротвердость покрытий определяли на микротвердомере «ПМТ-3» под нагрузкой 100 г.
Остаточные напряжения в покрытии определяли на рентгеновском дифрактометре «ДРОН-3М» с использованием фильтрованного Cuкα-излучения.
Стойкостные испытания режущего инструмента проводили при симметричном торцовом фрезеровании заготовок из стали 5ХНМ на станке 6Р12. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Режимы резания были следующими: скорость резания V=247 м/мин, подача S=0,4 мм/зуб, глубина резания t=1,5 мм, ширина фрезерования B=20 мм. За критерий износа была принята величина фаски износа по задней поверхности hз=0,4 мм.
В таблице 1 приведены результаты испытаний РИ с полученными покрытиями.
Как видно из приведенных в таблице 1 данных, стойкость пластин с покрытиями, нанесенными по предлагаемому способу, выше стойкости пластин с покрытием, нанесенным по способу-прототипу, в 1,17-1,33 раза.
Таблица 1 | |||||||
Результаты испытаний РИ с покрытием | |||||||
Материал покрытия | Химический состав нижнего слоя покрытия (соотношение металлических компонентов), мас.% | Микротвердость, ГПа | Остаточные напряжения, МПа | Стойкость, мин | Примечание | ||
Ti | Mo | Nb | |||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
TiN | - | 29,2 | -775 | 45 | Аналог | ||
TiZrN-TiN | 92,0 | - | 8,0* | 36,1 | -1185 | 143 | Прототип |
TiNbMoN-NbN | 89,25 | 4,75 | 6,0 | 37,9 | -1253 | 168 | |
88,0 | 4,0 | 8,0 | 38,8 | -1349 | 183 | ||
87,25 | 4,75 | 8,0 | 38,9 | -1407 | 190 | ||
86,5 | 5,5 | 8,0 | 38,6 | -1371 | 184 | ||
85,25 | 4,75 | 10,0 | 38,1 | -1265 | 169 | ||
* - содержание циркония в нижнем слое покрытия |
Способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение многослойного покрытия, отличающийся тем, что наносят нижний слой из нитрида соединения титана, ниобия и молибдена при их содержании, мас.%: титан 84,5-90,0, ниобий 6,0-10,0, молибден 4,0-5,5 и верхний слой из нитрида ниобия, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый из которых выполняют составным из титана и ниобия, второй - из ниобия и располагают противоположно первому, а третий изготавливают составным из титана и молибдена и располагают между ними, причем нижний слой наносят с использованием первого и третьего катодов, а верхний слой - с использованием второго катода.