Способ измерения деформации валов

Изобретение относится к области красильно-отделочного производства текстильной промышленности, а также может быть использовано в целлюлозно-бумажной, полиграфической, химической и других отраслях, где применяется валковое оборудование. Заявленный способ измерения деформации валов, заключающийся в определении деформации валов с помощью измерительного средства, приводимого в контакт с образующей валов, их нагружении, при этом валы плотно обхватывают по всей их рабочей ширине полимерной лентой, жестко закрепляют ее с двух сторон к корпусу машины по всей длине валов, фиксируют положение полимерной ленты на рабочих поверхностях валов во взаимно перпендикулярных осевых плоскостях с помощью штанги с опорами и двух пластин, установленных параллельно друг другу и перпендикулярно штанге по ее краям, которыми регулируют изменение необходимой величины прижимной нагрузки и положение устройства в горизонтальной или вертикальной плоскостях перпендикулярно оси вала посредством регулировочных прорезей на них, устраняя тем самым прогиб и перекос измерительного устройства, при этом упорный винт и шток измерительного средства опирают о ленту, оставляя зазор в 2-3 мм для обеспечения возможности установления на нулевой отметке шкалы измерительного средства или задания начальных значений для измерения деформации рабочих поверхностей валов, затем валы нагружают, для каждой величины нагрузки снимают показания измерительного средства, по разности показаний при нулевой или начальной и заданной нагрузке определяют величину суммарной деформации рабочих поверхностей валов. Техническим результатом заявляемого изобретения является повышение точности и сокращение времени определения деформации за счет одномоментного измерения суммарной деформации всех валов, участвующих в отжиме. 1 табл., 2 ил.

 

Изобретение относится к области красильно-отделочного производства текстильной промышленности, а также может быть использовано в целлюлозно-бумажной, полиграфической, химической и других отраслях, где применяется валковое оборудование.

Главные технологические показатели валковых машин определяются техническими параметрами отжимных валов и их покрытий. Необходимость повышения отжимного эффекта требует применения твердых покрытий и возможно малых диаметров отжимных валов. Увеличение твердости покрытия при существующей конструкции вала приведет к росту неравномерности отжима, которая и в настоящее время не всегда укладывается в рамки технологических требований. Поэтому требуются меры по снижению деформации рабочей поверхности вала в жале валов.

Известен способ определения деформации вала, заключающийся в том, что на нижний вал, установленный на подшипниках, в середине и по концам его рабочей поверхности располагают индикаторы, установленные на нулевую отметку. На середину вала устанавливают деревянный брус, нагружают вал сосредоточенной силой Q1, равной весу GB верхнего вала и усилию P дополнительного прижима. Под действием сосредоточенной силы вал прогибается, что регистрируется индикаторами. Разность f1 между показаниями среднего и полусуммой показаний крайних индикаторов является величиной прогиба рабочей части вала [Эйдлин, И.Я. Бумагоделательные и отделочные машины: изд. 3-е, испр. и доп. / Эйдлин И.Я. - М.: Лесная промышленность, 1970, с.128-134, 624.]. Недостатком этого способа является низкая точность определения показателей деформации рабочих поверхностей валов.

За прототип принят способ определения кривой прогиба вала бумагоделательной машины, заключающийся в том, что снимают показания деформации вала с помощью датчиков, приводимых в контакт с образующей вала установкой их на нулевую отметку и нагружением вала, поворачивают вал вместе с датчиками в вертикальное положение и по показаниям определяют деформации валов. [Авторское свидетельство 402595 СССР, МПК6 D21F 2/40, G01B 7/28. Способ определения кривой прогиба вала бумагоделательной машины / Кучер A.M.; заявитель и патентообладатель Ленинградский технологический институт целлюлозно-бумажной промышленности. - №1756784/29-33; заявл. 06.03.1972; опубл. 19.10.1973].

Недостатком этого способа является его низкая точность и длительность времени определения деформации, так как покрытия измеряемых валов непостоянны в различных точках поверхности и невозможно комплексно оценить измеренную деформацию.

Техническим результатом заявляемого изобретения является повышение точности и сокращение времени определения деформации за счет одномоментного измерения суммарной деформации всех валов, участвующих в отжиме.

Указанный технический результат достигается тем, что в способе измерения деформации валов, заключающемся в определении деформации вала с помощью измерительного средства, приводимого в контакт с образующей валов, их нагружении согласно изобретению, валы плотно обхватывают по всей их рабочей ширине полимерной лентой, например фторопластовой, жестко закрепляют ее с двух сторон к корпусу машины по всей длине валов, фиксируют положение полимерной ленты на рабочих поверхностях валов во взаимно-перпендикулярных осевых плоскостях с помощью штанги с опорами и двух пластин, установленных параллельно друг другу и перпендикулярно штанге по ее краям, которыми регулируют изменение необходимой величины прижимной нагрузки и положение устройства в горизонтальной или вертикальной плоскостях перпендикулярно оси вала посредством регулировочных прорезей на них, устраняя тем самым прогиб и перекос измерительного устройства, при этом упорный винт и шток измерительного средства опирают о ленту, оставляя зазор в 2-3 мм для обеспечения возможности установления на нулевой отметке шкалы измерительного средства или задания начальных значений для измерения деформации рабочих поверхностей валов, затем осуществляют нагружение валов, для каждой величины нагрузки от нуля до максимума снимают показания измерительного средства, по разности показаний при нулевой (начальной) и заданной нагрузке определяют величину суммарной деформации рабочих поверхностей валов.

Технический результат достигается потому, что точность и сокращение времени определения деформации повышается за счет одномоментного комплексного измерения суммарной деформации всех валов вследствие коэрцитивных сил, возникающих в полимерной ленте, действующих по всей поверхности ленты и рабочей ширине валов с одинаковым усилием, измеряя суммарную деформацию всех валов, участвующих в отжиме, а не в нескольких точках раздельно, обеспечивается натяжение по всей рабочей поверхности валов.

Изобретение поясняется чертежами, где на фиг.1 изображена схема установки для измерения деформации валов, на фиг.2 - график зависимости деформации покрытия от интенсивности распределенной нагрузки в жале валов.

Способ осуществляется следующим образом.

Для измерения деформации используют устройство (фиг.1), в котором на отжимные валы 1 и 2 накладывают полимерную ленту, например из фторопласта 3, и жестко закрепляют ее с двух сторон. С наружной стороны полимерной ленты на валы опорами 4 прижимают штангу 5, в регулировочных прорезях 6 которой закреплены пластина 7 с регулировочными прорезями 8 с упорным винтом 9 и пластина 10 с регулировочными прорезями 8 и измерительным средством 11. С помощью регулировочных прорезей 6 и 8 регулируют изменение необходимой величины прижимной нагрузки и положение устройства в горизонтальной или вертикальной плоскости перпендикулярно оси вала, устраняя тем самым прогиб и перекос измерительного устройства. Упорный винт 9 и шток измерительного средства 11 опирают о ленту 3, оставляя зазор в 2-3 мм для обеспечения возможности установления на нулевой отметке шкалы измерительного средства или задания начальных значений для измерения деформации рабочих поверхностей валов. Затем валы нагружают и для каждой величины нагрузки от нуля до максимума снимают показания шкалы измерительного средства. Разность показаний при нулевой (начальной) и заданной нагрузке является величиной суммарной деформации рабочих поверхностей обоих валов. Результаты измерений суммарных поперечных деформаций отжимных устройств, например «полиуретан-полиуретан», «полиуретан-сталь-полиуретан» и «сталь-полиуретан», сводятся в таблицу и используются для построения графика зависимости деформации покрытия от интенсивности распределенной нагрузки в жале валов (фиг.2).

Таблица
Вариант отжимного устройства Суммарные деформации, мм, при нагрузке
30 кН/м 40 кН/м 50 кН/м
«Полиуретан-полиуретан» 0,25 0,34 0,37
«Полиуретан-сталь-полиуретан» 0,35 0,44 0,50
«Сталь-полиуретан» 0,19 0,21 -

Кривые полной зависимости будут показывать суммарную деформацию покрытий и рубашек всех валов (их может быть, например, три) отжимного устройства. Кривые деформации покрытий строятся на основе данных о распределении нагрузки в жале валов и масштабных зависимостей.

Кривые суммарных деформаций рубашек валов получатся в результате вычитания суммарных деформаций покрытий из полных деформаций валов. Зависимости деформации покрытия от интенсивности распределенной нагрузки в жале валов показывают, что деформации покрытия в различных вариантах отжимного устройства различны. При одинаковых нагрузках она минимальна, когда оба вала (или несколько валов) имеют эластичное покрытие, и увеличивается на 25% в случае, когда покрытие имеет только один вал, и на 40%, когда диаметр вала покрытия уменьшен в 1,75 раза.

Способ измерения деформации валов, заключающийся в определении деформации валов с помощью измерительного средства, приводимого в контакт с образующей валов, их нагружении, отличающийся тем, что валы плотно обхватывают по всей их рабочей ширине полимерной лентой, жестко закрепляют ее с двух сторон к корпусу машины по всей длине валов, фиксируют положение полимерной ленты на рабочих поверхностях валов во взаимно перпендикулярных осевых плоскостях с помощью штанги с опорами и двух пластин, установленных параллельно друг другу и перпендикулярно штанге по ее краям, которыми регулируют изменение необходимой величины прижимной нагрузки и положение устройства в горизонтальной или вертикальной плоскостях перпендикулярно оси вала посредством регулировочных прорезей на них, устраняя тем самым прогиб и перекос измерительного устройства, при этом упорный винт и шток измерительного средства опирают о ленту, оставляя зазор в 2-3 мм для обеспечения возможности установления на нулевой отметке шкалы измерительного средства или задания начальных значений для измерения деформации рабочих поверхностей валов, затем валы нагружают, для каждой величины нагрузки снимают показания измерительного средства, по разности показаний при нулевой или начальной и заданной нагрузке определяют величину суммарной деформации рабочих поверхностей валов.



 

Похожие патенты:

Изобретение может быть использовано для контроля крупногабаритных изделий, отладки и контроля стабильности и точности технологических процессов механической обработки, для определения отклонений формы и расположения деталей машин в полевых условиях.

Изобретение относится к инженерной биологии и биоиндикации загрязнения окружающей среды измерениями качества ростовых органов различных видов растений, преимущественно древесных растений, например проб в виде отдельных листьев древесных растений с равномерной выпукло-волновой листовой пластинкой, например, дуба.

Изобретение относится к машиностроению и может быть использовано при производстве турбинных и компрессорных лопаток газотурбинных двигателей (ГТД), а также для контроля других деталей, имеющих сложный профиль поверхности.

Изобретение относится к метрологии и может быть использовано в машиностроении. .

Изобретение относится к области эксплуатации канальных ядерных реакторов, в частности реакторов типа АДЭ, и может быть использовано для непрерывного контроля искривления технологических каналов.

Изобретение относится к измерительной технике, в частности к области контроля геометрических параметров сложных поверхностей изделий, например пера лопаток газотурбинных двигателей, на координатных измерительных машинах.

Изобретение относится к измерительной технике и может быть использовано для измерения линейных размеров колесных пар, в частности, на железнодорожном и других видах транспорта.

Изобретение относится к балансировочной технике и может быть использовано для балансировки лопаточных колес, для снижения эксплуатационной разбалансировки. .

Изобретение относится к области машиностроения и может быть использовано при контроле кинематической точности и плавности работы шпинделя при изготовлении круглошлифовального станка и его эксплуатации.

Использование: изобретение относится к способам измерения, а именно к способам измерения профиля сечений, и может быть использовано для контроля профиля и положения рабочих лопаток моноколеса. Сущность изобретения: форму и положение профиля рабочих лопаток моноколеса контролируют в заданном сечении при помощи шаблонов путем совмещения рабочей поверхности шаблона с лопаткой в заданном сечении. Базовое положение шаблона определяют по чертежу. Шаблон перемещают в плоскости, перпендикулярной теоретической оси лопатки. Положение лопатки в заданном сечении контролируют относительно теоретической оси лопатки в тангенциальном и аксиальном направлениях. Контролируют наличие отклонения реальной оси лопатки от теоретической. Лопатки фиксируют в заданном положение и диск закрепляют неподвижно, после перемещают на шаг расположения. Перемещая шаблон в тангенциальном и аксиальном направлениях и поворачивая шаблон, добиваются полного их совмещения. Фиксируют величину смещения шаблона от исходного положения в обоих направлениях, угол и направление поворота лопатки. Затем моноколесо пошагово поворачивают и контролируют положение профиля остальных лопаток. Технический результат: повышение достоверности результата контроля моноколеса. 2 ил.

Изобретение относится к области управления качеством продукции, в частности, крупногабаритных топливных баков ракет. Способ заключается в выборе информативных параметров качества (ИПК) изготовления тонкостенной оболочки бака. При этом выделяют так называемые реперные точки, определяющие слабейшие места его конструкции, содержащие граничные характеристики ИПК. В качестве последних выбирают начальные неправильности формы, замеренные по всей поверхности оболочки топливного бака в нескольких взаимосвязанных сечениях. Полученные данные преобразуют и обрабатывают для использования в приемочном и выборочном контроле. Технический результат изобретения заключается в повышении достоверности принятия решения о допуске изделия в серию, в автоматизации и повышении производительности контроля. 1 з.п. ф-лы, 4 табл., 5 ил.

Предложенная группа изобретений относится к средствам для измерения размеров деталей в турбомашинах. Заявленный способ измерения деформации детали в турбомашине заключается в том, что проверяют профиль стержня в трех измерениях при помощи трехмерной модели профиля части эталонной детали; вставляют стержень в эндоскопическое отверстие корпуса турбомашины; позиционируют и закрепляют профилированную часть стержня на части контролируемой детали, соответствующей части эталонной детали; вводят эндоскоп внутрь корпуса турбомашины; измеряют деформацию части контролируемой детали при помощи эндоскопа, затем извлекают стержень из турбомашины и осуществляют новую проверку профиля стержня в трех измерениях, чтобы убедиться, что она не подверглась деформации в корпусе турбомашины. Устройство измерения деформации детали в турбомашине содержит стержень, часть которого имеет профиль, соответствующий профилю части эталонной детали такого же типа, что и исследуемая деталь, при этом упомянутая часть стержня дополнительно содержит визуальные метки для измерения расстояния, выполненные по ее длине. Кроме того, указанное устройство содержит средства крепления и позиционирования упомянутой части стержня в неподвижном положении и выровненной с частью исследуемой детали, соответствующей части эталонной детали. Данная группа изобретений позволяет повысить точность и упростить процедуру определения начала деформации контролируемой детали турбомашины. 3 н. и 10 з.п. ф-лы, 15 ил.

Изобретение относится к измерительной технике в машиностроении и может быть использовано для контроля формы цилиндрических поверхностей тонкостенных цилиндрических оболочек в научных исследованиях и производственной практике. Достигаемый технический результат изобретения заключается в повышении достоверности и точности измерения начальных неправильностей формы, в автоматизации и повышении производительности контроля. Сущность способа заключается в том, что измерения начальных неправильностей формы проводят по всей поверхности оболочки в нескольких взаимосвязанных сечениях оболочки, вращая оболочку относительно измерительной системы, аналоговый сигнал от датчиков измерительной системы преобразуют в цифровую форму, формируя матрицу квантованных отсчетов, по значениям ее элементов вычисляют с помощью двумерного дискретного косинусного преобразования матрицу коэффициентов, элементы которой используют в качестве параметров начальных неправильностей формы. 1 з.п. ф-лы, 5 ил.

Изобретение относится к измерительной технике в области диагностики цилиндрических и сферических резервуаров и может быть использовано для оценки остаточного ресурса стенки резервуара по малоцикловой усталости. Устройство содержит лазерный дальномер с датчиком температуры, закрепленный на внутренней стенке резервуара, сопряженный с вычислительным комплексом на базе ЭВМ для обработки информации и выдачи результатов. Технический результат - повышение точности измерения за счет устранения зависимости от погодных условий и прочих внешних воздействий температурного расширения. 1 ил.

Изобретение относится к измерительной технике, а именно к способам измерения геометрических параметров длинномерных деталей. Способ заключается в том, что длинномерную деталь устанавливают горизонтально на двух опорах с концов детали или консольно, обеспечивают ее неподвижность в процессе измерения, производят измерение в единой системе координат круглограмм сечений поверхности детали в поперечных плоскостях, расположенных вдоль продольной координатной оси и перпендикулярных ей. По полученным круглограммам определяют координаты центров сечений. После первого измерения круглограмм сечений во всех заданных поперечных плоскостях вдоль продольной координатной оси производят поворот детали на угол, равный 360/n, затем повторно производят измерение круглограмм сечений в тех же поперечных плоскостях. Соответствующие повороты детали и измерения круглограмм сечений в поперечных плоскостях производят n раз, причем число позиций n принимают целым не менее трех и кратным порядку осевой симметрии профиля детали. Далее строят радиус-векторы от продольной координатной оси до центров сечений, а за координаты точки оси детали в каждой поперечной плоскости принимают координаты конца суммарного радиус-вектора, определяемого путем сложения в каждой поперечной плоскости n радиус-векторов к центрам сечений, предварительно повернутых вокруг продольной координатной оси на угол, соответствующий углу поворота детали, при котором они были получены. По полученным значениям координат точек оси детали в каждой поперечной плоскости судят о непрямолинейности оси детали. Технический результат заключается в возможности измерения непрямолинейности оси длинномерных нежестких деталей с криволинейным осесимметричным профилем поперечного сечения, располагаемых в горизонтальном положении. 3 ил.

Группа изобретений относится к ядерной технике. Способ измерения искривления технологического канала ядерного реактора типа РБМК, заключающийся в том, что гибкий стержневой элемент, оснащенный оптоволоконными датчиками деформации, помещают в центральный канал тепловыделяющей сборки, пропускают через оптоволоконный датчик световой сигнал, а регистрацию изгиба стержневого элемента осуществляют за счет анализа отраженных световых сигналов. Устройство для осуществления указанного измерения, включающее гибкий стержневой элемент, снабжённый датчиками деформации. Причем оптоволоконные датчики деформации, соединённые с перестраиваемым лазером и фотоприемником, представляют собой решётки Брэгга, внедренные в структуру радиационно-стойкого кварцевого оптического волокна. Технический результат заключается в упрощении и повышении точности измерений. 2 н. и 5 з.п. ф-лы, 4 ил.

Способ относится к области технических измерений и может быть использован при измерении формы поперечных сечений сложного профиля, а также отклонений от круглости номинально круглых сечений. Техническая задача, решаемая данным изобретением, состоит в повышении точности измерения на кругломерах поперечных сечений при высокой производительности, снижении требований по точности изготовления элементов конструкции кругломера, по точности юстировки измерительных осей прибора, а также в снижении требований к условиям его эксплуатации. Способ измерения формы поперечных сечений изделий на кругломерах заключается в том, что устанавливают изделие на стол с образцовым вращением без точного центрирования, определяют с помощью датчика координаты точек профиля сечения относительно оси вращения, итерационным методом, по критерию минимизации амплитуды первой гармоники очередного приближения профиля сечения в его угловых координатах определяют с учетом известного смещения измерительной оси датчика относительно оси вращения эксцентриситет центра средней окружности сечения и его фазу, рассчитывают радиусы, соединяющие точки профиля сечения с центром его средней окружности в функции угла поворота стола, приводят полученные радиусы к угловым координатам точек профиля сечения. Координаты точек профиля сечения относительно оси вращения определяют для трех различных расположений изделия относительно стола, для каждого расположения изделия итерационным методом, по критерию минимизации амплитуды первой гармоники очередного приближения формы профиля сечения в его угловых координатах находят совокупность различных значений эксцентриситетов, их фаз и амплитуд выбранной гармоники спектра профиля при различных сочетаниях смещений измерительной оси датчика и его базы относительно оси вращения, выбранных из заданных диапазонов возможных значений указанных смещений, итерационным методом из полученной совокупности сочетаний амплитуд выбранной гармоники спектра профиля и возможных значений смещений по критерию равенства их соответствующих значений для одного сечения при трех его различных расположениях определяются указанные смещения, а по найденным смещениям для любого из указанных расположений определяют соответствующие величины эксцентриситета центра средней окружности, его фазы и радиусы, описывающие профиль сечения в его угловых координатах. 1 ил.
Наверх