Способ извлечения ионов тяжелых металлов

Изобретение относится к способам извлечения тяжелых металлов и может быть использовано для выделения, например, ионов меди, цинка, кобальта или никеля из водных растворов. Способ предусматривает извлечение ионов тяжелых металлов из водных растворов экстракцией. В качестве экстрагента используют 0,1% водный раствор гуминовых кислот, выделенных из термически обработанного растительного опада, а в качестве разбавителя - изоамиловый спирт. Процесс ведут при значениях рН=7-9 с последующей реэкстракцией органической фазы 2М соляной кислотой и определением содержания ионов металла в водной фазе комплексонометрически. Технический результат - упрощение процесса, возможность использования доступного экстрагента, полученного из растительных отходов, а также повышение степени извлечения ионов тяжелых металлов из растворов, возможность возвращения ионов тяжелых металлов обратно в водный раствор. 1 ил.

 

Изобретение относится к способам извлечения тяжелых металлов и может быть использовано для выделения, например, ионов меди, цинка, кобальта или никеля из водных растворов. Кроме того, возможно извлечение тяжелых металлов, находящихся в водных растворах в форме катионов, и обратное возвращение выделенных ионов в водный раствор, и может быть использовано для выделения, например, кобальта, никеля, меди или цинка.

Известен способ выделения тяжелых металлов из водных растворов, включающий обработку флотореагентом и последующую флотацию. В качестве флотореагента используют суспендированный в воде твердый раствор алифатических карбоновых кислот C8-C18 или абиетиновой кислоты в парафине при соотношении компонентов 1:20-30 (а.с. СССР №1293116, C02F 1/62, опубликован 29.02.1987, бюл. №8).

Данный метод, хотя и обеспечивает высокую степень извлечения ионов тяжелых металлов, но возникают определенные трудности при дальнейшей регенерации реагента-собирателя и концентрировании продукта.

Известен способ выделения тяжелых металлов из водных растворов сорбентами, в качестве которых используют гуминовые кислоты (Будаева А.Д и др. Сорбция меди и цинка из модельных растворов гуминовыми кислотами. - Химия в интересах устойчивого развития, 2008, №2, с.143-146). Недостатками данного способа является невысокая степень очистки от 46 до 86% и невозможность регенерации сорбента.

Наиболее близким по технической сущности и достигаемому результату к предлагаемому является способ селективной экстракции ионов меди, кобальта и никеля из водных растворов (см.патент РФ №2203969, МПК С22 В 3/26, опубл.10.05.03 г.).

Селективное извлечение цветных металлов осуществляется дробной экстракцией с постепенным изменением величины pH раствора и поддерживанием измененной величины pH на каждой периодической операции экстракции. В качестве экстрагента используют CYANX 272, активным компонентом которого является ди(2,4,4- триметилпентил)фосфиновая кислота. Извлечение преимущественно ионов меди осуществляется экстракцией при pH 4-5, кобальта -при pH 5-6, никеля - при pH 6-7, обеспечиваются высокие показатели селективного извлечения меди, кобальта и никеля при их совместном присутствии из водных растворов сульфатов их солей.

Недостатками способа-прототипа является сложность процесса и недоступность применяемого экстрагента.

Задачей создания изобретения является упрощение процесса, возможность использования доступного экстрагента, полученного из растительных отходов, а также повышение степени извлечения ионов тяжелых металлов из растворов, возможность возвращения ионов тяжелых металлов обратно в водный раствор.

Поставленная задача решается с помощью признаков, указанных в формуле изобретения, таких как способ извлечения ионов тяжелых металлов из водных растворов экстракцией, при котором в качестве экстрагента используют 0,1% водный раствор гуминовых кислот, выделенных из термически обработанного растительного опада, а в качестве разбавителя - изоамиловый спирт, причем процесс ведут при значениях рН=7-9, с последующей реэкстракцией органической фазы 2М соляной кислотой и определением содержания ионов металла в водной фазе комплексонометрически.

Вышеперечисленная совокупность существенных признаков позволяет получить следующий технический результат - упрощение процесса, возможность использования доступного экстрагента, полученного из растительных отходов, а также повышение степени извлечения ионов тяжелых металлов из растворов, возможность возвращения ионов тяжелых металлов обратно в водный раствор.

Изобретение характеризуется следующими условиями проведения процесса.

В качестве экстрагента используют гуминовые кислоты, выделенные из термически обработанного растительного опада, см. патент РФ № 2430075.

Для осуществления способа корректируют рН водного раствора, вводят гуминовые кислоты в изоамиловом спирте. Экстракцию проводят в течение 5 минут, в органический слой переходят ионы металлов из водного слоя. Водный слой отделяют, а органический слой подвергают реэкстракции 2М соляной кислотой. В качестве экстрагента используют 0,1% водный раствор гуминовых кислот, в качестве разбавителя используют изоамиловый спирт. Вводят равный объем водного раствора тяжелых металлов с определенным рН.

Для последующей реэкстракции отделяют водную фазу, а к органической фазе добавляют равный объем 2М соляной кислоты и реэкстрагируют в течение 5 минут.

Влияние рН на степень извлечения ионов тяжелых металлов см. на чертеже. Зависимости степени извлечения тяжелых металлов от рН раствора (Сме=0,1 М, Сгв=0,1%). Так, для кобальта максимум извлечения наблюдается при рН 8,6 (R=92.5%), меди при рН 7,8 (R=95%), для никеля при рН 8,8 (R-77,8%), в случае цинка при рН 8,2 (R=93,5%).

Пример конкретного выполнения

В делительную воронку вносили 10 мл изоамилового спирта, добавляли 1 мл 0,1%-го раствора гуминовых кислот, полученных из растительного опада (они переходили в органическую фазу, которая приобретала коричневую окраску), затем вводили дозатором 2 мл 0,1 моль/л соли (CoSO4, CuSO4, NiSO4, ZnSO4), различное количество 5% раствора аммиака для создания рН от 7 до 9, доводили водой объем водной фазы до 10 мл, добавляли 1 г KCl и встряхивали в течение 5 мин. Для установления процента экстракции определяли содержание ионов металла в водной фазе комплексонометрически. Для проведения реэкстракции органической фазы к 10 мл экстракта приливали 10 мл 2 моль/л HCl и встряхивали в течение 5 мин. Реэкстракт количественно переносили в колбу для титрования, нейтрализовали раствором 10%-ного аммиака и определяли содержание ионов металла в реэкстракте по вышеуказанному методу.

Предлагаемый способ найдет широкое применение при обработке технологических растворов, очистке промышленных и бытовых стоков.

Хотя настоящее изобретение описано посредством примеров его выполнения, объем данного изобретения не ограничивается этими примерами, но определяется лишь формулой изобретения с учетом возможных эквивалентов.

Способ извлечения ионов тяжелых металлов из водных растворов экстракцией, отличающийся тем, что в качестве экстрагента используют 0,1% водный раствор гуминовых кислот, выделенных из термически обработанного растительного опада, а в качестве разбавителя - изоамиловый спирт, причем процесс ведут при значениях pH=7-9 с последующей реэкстракцией органической фазы 2М соляной кислотой и определением содержания ионов металла в водной фазе комплексонометрически.



 

Похожие патенты:

Изобретение может быть использовано для очистки поверхностных сточных вод и нефтезагрязненных производственных стоков. Для осуществления способа очищаемую воду предварительно обрабатывают флокулянтом с гидрофобизирующими свойствами.
Изобретение может быть использовано в области водоочистки подземных и поверхностных вод от железа и для получения питьевой воды для небольших населенных пунктов, сельскохозяйственных комплексов.

Изобретение может быть использовано для кристаллизационной очистки питьевой воды от примесей, в том числе от тяжелых изотопов дейтерия. Устройство содержит корпус (5) с находящимся внутри него герметичным сосудом изменяющегося объема (10), в верхней части которого расположен фильтр (4) для отделения кристаллов тяжелой воды, выше которого расположено отверстие (3) для выхода легкой воды.

Изобретение относится к области очистки природных вод и может быть использовано для получения питьевой воды. Способ очистки природных вод включает окисление, нейтрализацию и двухстадийную фильтрацию.
Изобретение относится к комплексной обработке воды окислителем персульфатом натрия и ионами тяжелых металлов, в частности серебра, меди, цинка, и может быть использовано для обеззараживания оборотной воды бассейнов и доочистки сточных вод предприятий.

Изобретение относится к очистке воды, в частности к комплексной очистке воды. Исходную воду предварительно пропускают через модуль центробежных фильтров 3 с электромагнитными элементами, после чего подают в накопительную емкость 4 с одновременной подачей в воду хлоросодержащего препарата, полученного в электролизере 15 электролизом поваренной соли, далее воду подают на батарею половолоконных ультрафильтров 8, после чего осуществляют окончательную обработку воды на фотокаталитической колонке 11 на основе нанокристаллического диоксида титана и ультрафиолетовым излучением в бактерицидном модуле 16.
Изобретение относится к прикладной электрохимии и может быть использовано в медицине, а также в косметологии для стерилизации и обеззараживания. Способ активации воды заключается в ее электролизе между двумя электродами - анодом и катодом, разделенными между собой пористой диафрагмой, между которыми подано напряжение.

Изобретение относится к химической промышленности, энергетике и может быть использовано для очистки промышленных и бытовых стоков. Аппарат вихревого слоя содержит сменный картридж (2) из немагнитного материала со вставками из ферромагнитного материала, установленный в активной зоне трубы (4).

Изобретение может быть использовано для подготовки воды в котельных установках и теплообменных аппаратах с целью устранения накипеобразования и разрушения образовавшейся ранее накипи.

Изобретение относится к промышленной очистке и обеззараживанию воды и может быть использовано в области хозяйственно-бытового водоснабжения для удаления примесей из природных, преимущественно подземных, вод.

Изобретение может быть использовано для очистки водопроводной воды в бытовых условиях от вредных примесей, в том числе от тяжелых изотопов дейтерия. Устройство содержит корпус (1) с находящейся внутри него герметичной емкостью изменяющегося объема (14), состоящую из верхнего цилиндра меньшего диаметра (5), нижнего цилиндра большего диаметра (10) и находящейся между ними гибкой оболочки (9). Верхняя часть цилиндра меньшего диаметра (5) содержит полость (4) и фильтр (2), выше которого расположено отверстие для выхода легкой воды (3). Объем полости (4) связан центральным каналом (7) с объемом гибкой оболочки (9) и каналами (8) - с объемом цилиндра большего диаметра (10), в котором расположены направляющие (11), жестко связанные с нижней частью цилиндра большего диаметра (10). Предложенное бытовое устройство обеспечивает простое и надежное получение водопроводной воды, очищенной от тяжелых изотопов дейтерия. 1 ил.

Изобретение относится к очистке сточных вод, содержащих ионы тяжелых металлов и органические вещества, и может быть использовано в промышленности для получения воды для технических нужд. Способ очистки гальваностоков от ионов тяжелых металлов включает смешение гальваностоков, содержащих ионы тяжелых металлов, с реагентом-осадителем, содержащим жирные кислоты. В качестве реагента-осадителя используют сточные воды рыбоперерабатывающих и мясоперерабатывающих пищевых производств с содержанием жира 200-700 мг/л, предварительно доведенные до pH 9,0 кальцинированной содой. Смесь отстаивают для коагуляции до полного осаждения при комнатной температуре и отделяют осадок. Изобретение позволяет упростить и повысить эффективность способа очистки гальваностоков от ионов тяжелых металлов и одновременно утилизировать жиросодержащие промышленные стоки пищевых производств. 1 з. п. ф-лы, 2 табл.

Изобретение относится к очистке природных и сточных вод от механических примесей, и может быть использовано в системах очистки сточных вод в системе жилищно-коммунального хозяйства, а также в системах очистки природных питьевых вод городов и поселений. Устройство содержит трубопроводы, насосы и отстойник в виде прямоугольного короба, разделенный на секции вертикальными перегородками. Короб разделен не менее чем на четыре изолированные секции, соединенные между собой последовательно трубопроводами с насосами. Во второй, третьей и четвертой секциях на верхней стенке короба дополнительно закреплены вертикальные перегородки с нижним переливом. В каждой секции установлен вертикально фильтрующий элемент в виде цилиндрического перфорированного стакана со сквозными отверстиями с возможностью перемещения при помощи эксцентрикового механизма, на верхней части фильтрующего элемента жестко закреплена цилиндрическая крышка с центральным отверстием. На противоположных вертикальных перегородках каждой секции под крышкой жестко закреплены опорные элементы с установленными на них пружинами сжатия, контактирующими с крышкой. Фильтрующий элемент каждой секции соединен через трубопровод и насос с последующей секцией. В первой - третьей секциях фильтрующий элемент выполнен в виде цилиндрического перфорированного стакана со сквозными отверстиями, на боковой поверхности стакана первой, второй и третьей секций отверстия расположены по спирали, на боковой поверхности стаканов второй и третьей секций между отверстиями на поверхности навита проволока, на боковой поверхности стакана третьей секции между отверстиями жестко закреплены валики-выступы, а фильтрующий элемент четвертой секции выполнен из пластин, закрепленных по диаметру на верхней крышке и образующих щелевидные зазоры с навитой по спирали поверх зазоров проволокой. 1 з.п. ф-лы, 1 ил.

Заявляемое изобретение относится к химии высокомолекулярных соединений, нанотехнологий и фотохимии и касается разработки фотополимеризующейся композиции для получения полимерного материала, обладающего трехмерной нанопористой структурой с гидрофобной поверхностью пор, одностадийного способа его получения и пористого полимерного материала с селективными сорбирующими свойствами и одностадийного формирования на его основе водоотделяющих фильтрующих элементов с заданной геометрией и требуемой механической прочностью, применяемых в устройствах для очистки органических жидкостей, преимущественно углеводородных топлив, масел, нефтепродуктов, от эмульгированной воды и механических примесей. Фотополимеризующаяся композиция содержит олигоэфиракрилат, светочувствительный компонент, в качестве которого используют 1,1,7-триметилбицикло[2.2.1]гептан-2,3-дион (камфорхинон) или орто-хинон или их смесь, восстанавливающий агент, например, амин, функционализирующий мономер винилового ряда, отверждающийся по радикальному механизму, менее реакционноспособный по сравнению с олигоэфиракрилатом и образующий гидрофобный полимер, и неполимеризационноспособный компонент, растворяющий мономеры композиции и ограниченно совместимый с конечным полимером. На основе композиции разработан способ одностадийного получения полимерного нанопористого материала с функционализированной поверхностью пор, а также способы одностадийного получения изделий - водоотделяющих фильтрующих элементов с заданной геометрией и повышенной механической прочностью. Технический результат - получен нанопористый полимерный материал, селективные сорбирующие свойства которого подтверждены экспериментально. Одностадийным способом фотополимеризации впервые получены нанопористые полимерные водоотделяющие фильтрующие элементы с заданной геометрией и повышенной механической прочностью. Селективно-сорбирующие свойства фильтрующих элементов экспериментально доказаны на примере очистки бензола от воды. 8 н. и 7 з.п. ф-лы, 1 табл., 8 ил., 6 пр.
Изобретение относится к биохимии. Предложен способ очистки воды и мерзлотной почвы от нефти и нефтепродуктов. Способ включает использование бактериальной суспензии на основе клеток непатогенного штамма бактерий Pseudomonas panipatensis ВКПМ В-10953 с титром 1·109 микробных клеток/см3. Изобретение обеспечивает высокую степень очистки почв и воды от нефти и нефтепродуктов в широком диапазоне температур (от +8°С до +30°С). 3 табл., 4 пр.

Изобретение относится к области переработки отходов, в частности к системам фильтрации жидких отходов, установленным на транспортных средствах. Транспортное средство имеет средство извлечения 2 для извлечения жидких отходов, находящихся в контейнере 9 для жидких отходов в качестве обрабатываемого раствора. Устройство оснащено системой фильтрации 1 для фильтровальной обработки извлеченного обрабатываемого раствора. Концентрированный раствор, выпускаемый из микрофильтрационного аппарата системы фильтрации 1, попадает в аппарат 10 карбонизационной обработки для карбонизации. Система фильтрации 1 и аппарат 10 карбонизационной обработки приводятся в действие средством подачи электропитания 4. Обработанная жидкость с помощью средства подачи 3 для подачи жидкости, обработанной в системе фильтрации 1, передается в тот же или другой контейнер завода или другого подобного объекта. Средство управления 5 управляет работой системы фильтрации 1 и аппаратом 10 карбонизационной обработки. Устройство дополнительно оснащено приводным устройством для транспортного средства, включающим двигатель и приводной механизм. Обеспечивается минимизация выбросов загрязняющих веществ заводом, повышение эффективности очистки жидких отходов, 2 з.п., 3 ил.
Изобретение может быть использовано в металлургии благородных металлов, в том числе при обезвреживании сбросных цианистых растворов, образующихся при извлечении золота из коренных руд. Способ включает добавление к сбросным цианистым растворам соединений железа (2+) и обработку электроимпульсами высокого напряжения с удельным расходом энергии не более 100 кДж/моль. В качестве соединений железа (2+) используют пирит в количестве 10-100 кг на 1 т раствора. Полученную смесь обезвреженного раствора и пирита после электроимпульсной обработки подают на флотацию золотосодержащей сульфидной руды. Предлагаемый способ позволяет снизить расход электроэнергии на обезвреживание цианистых растворов и сократить потери золота со сбросом. 1 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к фильтрующим устройствам для очистки жидкости и может найти применение в бытовых условиях для доочистки водопроводной воды и других жидкостей бытового назначения. Устройство фильтрационное состоит из двух рабочих зон, по меньшей мере одного средства фиксации, по меньшей мере одного регулирующего элемента. Верхняя рабочая зона выполнена с возможностью регулирования значения жесткости фильтруемой жидкости на протяжении всего ресурса в виде контейнера с внутренним пространством, заполненным фильтрующим материалом, выполненным с двумя группами распределителей потоков фильтруемой жидкости. Регулирующий элемент представляет собой канал, расположенный в верхней рабочей зоне, и взаимосвязанный с ним в процессе фильтрации жидкости клапан средства фиксации. Технический результат: обеспечение равномерного умягчения фильтруемой жидкости на протяжении всего ресурса работы устройства с одновременным сохранением фильтрующей способности. 14 з.п. ф-лы, 10 ил.
Изобретение относится к гидрометаллургии цветных и редких металлов и может быть использовано при подготовке растворов для экстракционного и сорбционного извлечения и разделения элементов и при очистке кислых растворов от кремнийсодержащих элементов. Способ обескремнивания кислых растворов соединений цветных и редких металлов включает их обработку при перемешивании флокулянтом - метилсиликонатом натрия - и последующее отделение образовавшегося продукта. Обработку ведут при добавлении изопропилового спирта в объемном отношении 0,5-2,5% к объему обрабатываемого раствора. Водный раствор метилсиликоната натрия вводят в количестве 0,7-1,5 % объемных от объема исходного раствора. Обработку исходных растворов ведут при температуре 40-60оС. Изобретение позволяет проводить обескремнивание кислых растворов до величин менее 0,1 г/дм3 SiO2. 2 з.п. ф-лы, 10 пр.
Изобретение может быть использовано на очистных сооружениях производственного и хозяйственно-питьевого водоснабжения, а также при очистке сточных вод от силикатов. Для осуществления способа очищаемые воды фильтруют через слой активированного оксида алюминия, предварительно модифицированный 0,5%-ным раствором алюмината натрия. Регенерацию отработанного активированного раствора алюмината натрия осуществляют 0,1-0,5%-ным раствором алюмината натрия. Способ обеспечивает повышение сорбционной емкости загрузки по поглощаемому кремнию, увеличение продолжительности фильтроцикла между регенерациями загрузки и создание безотходной технологии обескремнивания воды с повторным использованием отработанного регенерационного раствора. 2 табл., 1 пр.
Наверх