Модульный светодиодный прожектор

Изобретение относится к светотехнике, а именно к светодиодным оптическим блокам, используемым в качестве источника света в световых приборах прожекторного типа, применяемым, преимущественно, для освещения железнодорожных путей и междупутий. Технический результат - создание модульного светодиодного прожектора с холодным резервированием секторов с максимальной соосностью направления оптических осей, обеспечение разных уровней света, обеспечение теплоотвода и регулировок наклона прожектора, обеспечение электрической безопасности, повышение ремонтопригодности при эксплуатации. Достигается тем, что в модульном светодиодном прожекторе, содержащем защитный корпус, в котором установлены светодиодные модули, блок питания, каждый светодиодный модуль содержит оптическую систему со светодиодными секторами, включающими светодиоды, линзы и теплопроводящие печатные платы на основе алюминия, при этом светодиоды установлены в фокусе линз, введены дополнительно светодиодный модуль холодного резервирования и вертикальные и горизонтальные регуляторы положения оптической системы, а светодиодные модули размещены на несущем основании, выполненном в виде единой ровной детали или в виде сварной рамы на металлической основе с алюминиевыми теплоотводами, а преобразователь напряжения расположен либо непосредственно в корпусе радиатора модуля, либо в отдельном корпусе, каждый сектор дополнительно содержит съемные разборные фокусирующие сборки, индивидуальные для каждого светодиода, закрывающие пластины, причем фокусирующие сборки состоят из асферической линзы и держателя на основе из поликарбоната. 6 з.п. ф-лы, 3 ил.

 

Изобретение относится к светотехнике, а именно к светодиодным оптическим блокам, используемым в качестве источника света в световых приборах прожекторного типа, применяемым, преимущественно, для освещения железнодорожных путей и междупутий.

Известен светодиодный источник излучения, содержащий корпус с установленными в нем, по меньшей мере, четырьмя полупроводниковыми излучателями света оптического диапазона, объединенными электрической цепью, по меньшей мере, один базовый элемент, держатель базового элемента с присоединительными выводами и покровной линзой, при этом электрическая цепь выполнена в виде двухполупериодного моста из светодиодных источников излучения с включенной нагрузкой также из двух включенных последовательно светодиодных источников излучения, а корпус служит радиатором для отвода тепла от базового элемента, при этом полупроводниковые излучатели света выполнены одноцветного либо разноцветного излучения, источник излучения дополнительно содержит стабилизирующее сопротивление, установленное последовательно с полупроводниковым излучателям света, покровная линза и излучатели света установлены с зазором относительно друг друга, в котором размещен прозрачный или рассеивающий герметизирующий эластичный компаунд, покровная линза выполнена плоской, сферической или в виде линзы Френеля, полупроводниковый излучатель света содержит, по меньшей мере, четыре pn-перехода, полупроводниковые излучатели света покрыты люминофором, трансформирующим излучение полупроводниковых излучателей света в излучение белого цвета (патент РФ на изобретение №2444676).

Известен светодиодный оптический блок, включающий монтажный элемент, на внешней поверхности которого установлены первая группа светодиодов, зафиксированных на указанном монтажном элементе таким образом, что их оптические оси ориентированы параллельно друг другу, и вторая группа светодиодов, зафиксированных на указанном монтажном элементе таким образом, что их оптические оси ориентированы в пространстве под углом по отношению к пространственному положению оптических осей светодиодов первой группы, при этом монтажный элемент выполнен в виде панели, светодиоды первой группы установлены на лицевой поверхности панели в верхней ее половине и зафиксированы на панели таким образом, что их оптические оси ориентированы нормально к поверхности панели, светодиоды второй группы размещены в нижней половине лицевой поверхности панели и зафиксированы на панели с помощью закрепленных на ней фиксаторов положения светодиодов таким образом, что их октические оси в плоскости продольного сечения панели имеют угловое смещение вниз относительно положения оптических осей светодиодов первой группы, причем, по меньшей мере, у части светодиодов второй группы оптические оси в плоскости продольного сечения панели имеют отличающееся друг от друга угловое смещение вниз относительно положения оптических осей светодиодов первой группы, по меньшей мере, часть светодиодов второй группы зафиксирована на панели с помощью закрепленных на ней фиксаторов положения светодиодов таким образом, что их оптические оси в плоскости поперечного сечения панели имеют угловое смещение относительно положения оптических осей светодиодов первой группы, по меньшей мере, у части светодиодов оптические оси имеют отличающееся друг от друга угловое смещение в плоскости поперечного сечения панели относительно положения оптических осей светодиодов первой группы (патент РФ на изобретение №2415335).

Известен модульный светодиодный прожектор, содержащий защитный корпус с прозрачным колпаком, элементы схемы электрического питания, светоизлучающие диоды, оптическую систему, при этом светоизлучающий элемент выполнен на основе модульной конструкции, где светодиодные модули установлены внутри общего защитного корпуса, каждый светодиодный модуль состоит из теплоотводящего корпуса, выполненного из металла или теплопроводящей керамики, на который установлена многослойная печатная плата на теплоотводящей основе с установленными светодиодами и элементами схемы электрического питания, а также оптической системы, модуль содержит также электронную систему, позволяющую осуществлять плавное регулирование осевой силы света прожектора, оптическая система выполнена в виде плоской матрицы из линз Френеля с параллельными оптическими осями, при этом светодиоды установлены в фокусе линз или в виде матрицы на основе асферических линз с параллельными оптическими осями, при этом светодиоды установлены в фокусе линз или из совокупности линз Френеля и асферических линз, оптическая система прикреплена к корпусу каждого модуля посредством эластичного полимерного состава, обеспечивающего юстировку оптической системы и герметизацию светодиодного модуля, или оптическая система прикреплена к корпусу каждого модуля посредством эластичного полимерного состава, обеспечивающего юстировку оптической системы и герметизацию светодиодного модуля, защитный корпус прожектора имеет воздушные каналы для обеспечения охлаждения теплоотводящих элементов встречным воздушным потоком, воздушные каналы защитного корпуса имеют сетки/фильтры для предотвращения загрязнения охлаждающей системы, корпус прожектора имеет встроенную систему дополнительного принудительного охлаждения, прозрачный колпак имеет просветляющее покрытие, нанесенное на внутренней поверхности колпака, или прозрачный колпак имеет упрочняющее покрытие, нанесенное на внешней поверхности колпака, или прозрачный колпак имеет просветляющее покрытие на внутренней поверхности и упрочняющее покрытие на внешней поверхности колпака (патент РФ на полезную модель №99104) - прототип.

Недостатками известных модульных светодиодных прожекторов являются:

Неудовлетворительная ремонтопригодность при эксплуатации, неэффективная регулировка уровня света и теплоотвода, неэффективное обеспечение электрической безопасности.

Задачами изобретения являются: создание модульного светодиодного прожектора с холодным резервированием секторов с максимальной соосностью направления оптических осей, обеспечение разных уровней света, обеспечение теплоотвода и регулировок наклона прожектора, обеспечение электрической безопасности, повышение ремонтопригодности при эксплуатации.

Для решения поставленных задач предлагается модульный светодиодный прожектор, содержащий защитный корпус, в котором установлены светодиодные модули, блок питания, при этом каждый светодиодный модуль содержит оптическую систему со светодиодными секторами, включающими светодиоды, линзы и теплопроводящие печатные платы на основе алюминия, при этом светодиоды установлены в фокусе линз, отличающийся тем, что в модульный светодиодный прожектор введены дополнительно светодиодный модуль холодного резервирования и вертикальные и горизонтальные регуляторы положения оптической системы, а светодиодные модули размещены на несущем основании, выполненном в виде единой ровной детали или в виде сварной рамы на металлической основе с алюминиевыми теплоотводами, преобразователь напряжения расположен либо непосредственно в корпусе радиатора модуля, либо в отдельном корпусе, каждый сектор дополнительно содержит съемные разборные фокусирующие сборки, индивидуальные для каждого светодиода, закрывающие пластины, причем фокусирующие сборки состоят из асферической линзы и держателя на основе из поликарбоната.

Модульный светодиодный прожектор, отличающийся также тем, что асферические линзы выполнены на основе прозрачного оргстекла.

Модульный светодиодный прожектор, отличающийся также тем, что асферические линзы выполнены на основе прозрачного уф-стабилизированного поликарбоната.

Модульный светодиодный прожектор, отличающийся также тем, что преобразователь напряжения выполнен с возможностью ступенчатой регулировки уровня света.

Модульный светодиодный прожектор, отличающийся также тем, что преобразователь напряжения содержит гальваническую развязку светодиодов от питающей сети.

Модульный светодиодный прожектор, отличающийся также тем, что закрывающие пластины выполнены на основе текстолита.

Модульный светодиодный прожектор, отличающийся также тем, что закрывающие пластины выполнены на основе полимерного материала

Доказательство существенности отличий:

- применение ровной поверхности единой несущей детали или единой сварной рамы позволяет достичь однонаправленности оптических осей;

- введением светодиодного модуля холодного резервирования появляется возможность независимого отключения и демонтажа одного или нескольких секторов, вышедших из строя;

- применение алюминиевого теплоотвода позволяет разместить в корпусе преобразователь напряжения;

- использование преобразователя напряжения позволяет осуществлять ступенчатую регулировку уровня света;

- использование съемных фокусирующих сборок и текстолитовых или полимерных пластин позволяет защитить проводящие электрический ток элементы от случайного прикосновения.

На фиг.1 показан фронтальный вид модульного светодиодного прожектора с основанием в виде единой ровной детали; на фиг.2 показан вид сверху модульного светодиодного прожектора с основанием в виде единой ровной детали: на фиг.3 показан вид сверху модульного светодиодного прожектора с основанием в виде сварной рамы.

На чертежах изображено:

1.1 - 1.n - светодиоды;

2.1 - 2.n - фокусирующие сборки, состоящие из асферической линзы и держателя и представляющие собой оптическую систему прожектора;

3.1 - 3.n - асферические линзы

4 - плата на алюминиевой основе;

5 - конструктив источника питания в отдельном корпусе;

6 - закрывающие пластины;

7.1 - 7.m - каналы;

8.1 - 8.k - радиаторы на основе алюминия;

9 - основание в виде единой ровной детали;

10 - элементы регулировки положения оптической системы;

11.1 - 11.n - источники питания, расположенные в корпусе радиатора;

12 - основание в виде единой сварной рамы.

Модульный светодиодный прожектор предназначен для освещения железнодорожного пути перед локомотивом в темное время суток.

Модульный светодиодный прожектор состоит из нескольких независимых светодиодных цепочек с индивидуальными источниками 4 питания.

Светодиоды 1.1-1.n, где 72<n<90 включительно, и фокусирующая сборка 2.1-2.n, где 72<n<90 включительно, представляют собой оптическую систему модульного светодиодного прожектора. При этом фокусирующая сборка 2.1-2.n состоит из держателя из поликарбоната и асферической линзы 3.1-3.n из прозрачного оргстекла или уф-стабилизированного поликарбоната. Использование прозрачного поликарбоната или оргстекла в линзе 3.1-3.n позволяет повысить ее прочность и уменьшить световые потери в материале. Сборные линзы 2.1-2.n могут быть демонтированы по отдельности с основной сборки прожектора.

При этом для эффективного отвода тепла от светодиодов 1.1-1.n используются платы 4 на основе алюминия и алюминиевые радиаторы 8.1-8.k, где 3<k<4 включительно.

Сборка модульного светодиодного прожектора может быть модульной или цельной.

В случае цельной сборки соосность излучения светодиодов 1.1-1.n достигается благодаря использованию массивной алюминиевой платы 9. В случае модульной сборки соосность достигается путем совместного применения алюминиевой рамы 12 и набора алюминиевых радиаторов 12.1 -12k, где 3<k<4 включительно.

Источник 4 питания может быть выполнен модульно или в едином конструктиве, но управляться может поканально 7.1-7.n, где 3<n<6.

Модульный светодиодный прожектор содержит элементы 10 регулировки оптической системы в вертикальной и горизонтальной плоскостях, которые позволяют осуществлять установку прожектора таким образом, чтобы свет был направлен в нужную сторону.

Защита от прикосновения к токоведущим частям обеспечивается внешней оболочкой при использовании закрывающих пластин 5.

Источник 4 питания является импульсным и может содержать или не содержать гальваническую развязку нагрузки от питающей сети.

Источник 4 питания может иметь четырехпроводное подключение: «плюс», «минус», «тускло», «ярко» или трехпроводное подключение: «минус», «плюс», «ярко».

Соединения оптической части 1.1-1.n с источником 4 питания могут быть разъемными или неразъемными.

Замена секторов может происходить индивидуально (модульная конструкция, цельная конструкция), для чего необходимо отсоединить провода от сектора и демонтировать удерживающие его винты, или секциями совместно с источником питания (модульная конструкция), для этого необходимо отсоединить питающий провод модуля и демонтировать винты, удерживающие модуль.

Уровень светового потока от модульного светодиодного прожектора регулируется дискретно в двух положениях: «ярко» (100%) и «тускло» (10%). Регулировка обеспечивается подачей управляющей команды на разъем источника 4 питания.

1. Модульный светодиодный прожектор, содержащий защитный корпус, в котором установлены светодиодные модули, блок питания, при этом каждый светодиодный модуль содержит оптическую систему со светодиодными секторами, включающими светодиоды, линзы и теплопроводящие печатные платы на основе алюминия, при этом светодиоды установлены в фокусе линз, отличающийся тем, что в модульный светодиодный прожектор введены дополнительно светодиодный модуль холодного резервирования и вертикальные и горизонтальные регуляторы положения оптической системы, а светодиодные модули размещены на несущем основании, выполненном в виде единой ровной детали или в виде сварной рамы на металлической основе с алюминиевыми теплоотводами, а преобразователь напряжения расположен либо непосредственно в корпусе радиатора модуля, либо в отдельном корпусе, каждый сектор дополнительно содержит съемные разборные фокусирующие сборки, индивидуальные для каждого светодиода, закрывающие пластины, причем фокусирующие сборки состоят из асферической линзы и держателя на основе из поликарбоната.

2. Модульный светодиодный прожектор по п.1, отличающийся тем, что асферические линзы выполнены на основе прозрачного оргстекла.

3. Модульный светодиодный прожектор по п.1, отличающийся тем, что асферические линзы выполнены на основе прозрачного уф-стабилизированного поликарбоната.

4. Модульный светодиодный прожектор по п.1, отличающийся тем, что преобразователь напряжения выполнен с возможностью ступенчатой регулировки уровня света.

5. Модульный светодиодный прожектор по пп.1 или 4, отличающийся тем, что преобразователь напряжения содержит гальваническую развязку светодиодов от питающей сети.

6. Модульный светодиодный прожектор по п.1, отличающийся тем, что закрывающие пластины выполнены на основе текстолита.

7. Модульный светодиодный прожектор по п.1, отличающийся тем, что закрывающие пластины выполнены на основе полимерного материала.



 

Похожие патенты:

Изобретение относится к источникам белого света на основе полупроводниковых светоизлучающих диодов (СИД) с удаленными фотолюминофорными конвертерами. Предложенный осветитель содержит теплоотводящее основание с отверстием для выхода излучения, закрепленные по периферии отверстия СИД, излучающие первичное излучение, на удалении от которых с одной стороны отверстия последовательно расположены конвертер первичного излучения, выполненный в виде вогнутого слоя фотолюминесцентного материала, и светоотражатель с вогнутой отражающей свет поверхностью, обращенные вогнутостями к СИД и выходному отверстию.

Изобретение относится к области светотехники. .

Изобретение относится к области электротехники. .

Изобретение относится к области светотехники и касается конструкции ламп светодиодных, предназначенных для применения, преимущественно, в помещениях общественного назначения (библиотеки, театры, офисы, кафе и др.).

Изобретение относится к светотехнике, предпочтительно к области горно-шахтного осветительного оборудования. .

Изобретение относится к источникам белого света на основе полупроводниковых светоизлучающих диодов с удаленными фотолюминофорными конвертерами. .

Изобретение относится к средствам светоизлучения и может быть использовано в системах освещения. .

Изобретение относится к светотехнике, а именно к светодиодным оптическим блокам, используемым в качестве источника света в световых приборах прожекторного типа, применяемым, преимущественно, для освещения железнодорожных междупутий.

Изобретение относится к осветительным системам на базе светодиодов. .

Изобретение относится к области светотехники и может быть использовано для уличного, промышленного, бытового и архитектурно-дизайнерского освещения. Техническим результатом является повышение эффективности охлаждения за счет увеличения коэффициента теплопередачи охлаждающей среды и выравнивание параметров светового потока по всей площади формируемого светового пятна. Светодиодный светильник содержит светопрозрачный корпус с полостью, в которой размещен светодиод, зафиксированный на основании светопрозрачного корпуса в жидкой охлаждающей среде, размещенной в секторе излучения светодиодного элемента. В указанную жидкую охлаждающую среду введены теплопроводящие элементы, находящиеся в твердой фазе и выполненные из светопрозрачного материала с плавучестью в охлаждающей среде, равной нулю. Количество и размеры теплопроводящих элементов выбраны с возможностью обеспечения их свободного взаимоскольжения в пределах полости светопрозрачного корпуса, который снабжен средством приведения охлаждающей среды в движение. Теплопроводящим элементам могут быть приданы магнитные свойства, обеспечивающие возможность приведения их в движение электромагнитным полем. При этом, по меньшей мере, часть поверхности теплопроводящих элементов, находящихся в твердой фазе, и неизлучающая поверхность светодиодного элемента могут быть снабжены светоотражающим покрытием, а количество теплопроводящих элементов, находящихся в твердой фазе, выбрано из расчета обеспечения светопрозрачности охлаждающей среды. Теплопроводящие элементы могут быть выполнены упругими, с возможностью компенсации теплового расширения жидкой среды. 3 з.п. ф-лы, 5 ил.

Изобретения относятся к химической промышленности и светотехнике и могут быть использованы в светодиодах для эмиссии окрашенного или белого света. Люминесцентное вещество с силикатными люминофорами, легированными Eu2+, содержит твердые растворы смешанных фаз оксиортосиликатов щелочноземельных и редкоземельных металлов, представленными, например, формулой (1-х)MII 3SiO5·x SE2SiO5:Eu, где 0<х≤0,2; МII представляет собой ионы двухвалентного металла, содержащие по меньшей мере один ион, выбранный из группы, состоящей из стронция и бария, и SE - редкоземельные металлы из группы, включающей Y, La, Gd. Люминофор может дополнительно содержать ионы двухвалентного металла из группы, включающей Ca и Cu, а также Ce3+ в качестве дополнительного активатора. Увеличен срок службы люминофоров в светодиодах за счёт повышения устойчивости к атмосферной влажности. 2 н. и 9 з.п. ф-лы, 2 ил., 2 табл., 4 пр.

Изобретение относится к области светотехники и может быть использовано в производстве световых приборов с мощными и блочными светодиодными кристаллами. Светотехнический модуль состоит из светодиодного кристалла, электромонтажной платы, отражателя и радиатора, отличающийся тем, что плата, на которой смонтирован кристалл, отражатель и радиатор выполнены из единого куска металла с хорошей теплопроводностью и высоким коэффициентом отражения. Радиатор-отражатель выполнен методом продольно-поперечной гибки с минимальной деформацией исходного материала; излишки материала, образуемые в процессе формовки, перетягиваются в ребра жесткости переменной высоты, обеспечивают отвод тепла от отражателя и панели, на которой смонтирован светодиодный кристалл, без промежуточных элементов. Технологическая подготовка отражающей поверхности осуществляется на заготовке в развернутом виде до операции формовки, а размеры заготовки и теплорассеивающих ребер жесткости определяются из математического выражения. Техническим результатом является снижение теплового сопротивления на пути теплового потока от кристалла к радиатору и улучшается тепловой режим. 7 ил.

Изобретение относится к области светотехники. Светильник включает корпус, источник питания, совокупность светодиодных линеек и отражателей, стекло, закрывающее светодиодные линейки, наружное оребрение, расположенное на корпусе, слой теплоотводящего материала, преимущественно выполненный на основе графита, расположенный между светодиодными линейками и корпусом светильника, полимерные крышки, резиновые прокладки, шайбы, в которые вставлены резиновые прокладки, расположенные в отверстиях корпуса, и мембранный клапан в крышке корпуса. Техническим результатом является повышение надежности и долговечности в эксплуатации. 3 з.п.ф-лы, 2 ил.
Изобретение относится к способам получения фотолюминофоров и может быть использовано при изготовлении светодиодов белого света. Смешивают компоненты смеси, измельчают в планетарной мельнице с ускорением 20 G в течение не менее 25 мин. Полученный порошок прокаливают и подвергают ультразвуковой обработке путем резкого охлаждения в ультразвуковой ванне с последующей отмывкой и прецизионным просевом через сито с размером ячейки 15-20 мкм. Полученный люминофор имеет средний размер частиц не более 4 мкм, максимум полосы люминесценции при λ=545-565 нм. Уменьшается длительность процесса получения люминесцентного материала, увеличивается яркость люминесценции. 4 пр.

Изобретения могут быть использованы в светотехнике и оптике при изготовлении устройств освещения. Композиция предназначена в качестве связующего или для соединения оптических элементов и содержит силикат, алкилсиликат и/или алкилполисилоксан в качестве связующего материала и наночастицы со средним диаметром 100 нм или меньше в количестве 15-75% от объема композиции. Композиция имеет первый показатель преломления (n1) по меньшей мере 1,65 для света с первой длиной волны 350-500 нм и второй показатель преломления (n2) 1,60-2,2 для света со второй длиной волны 550-800 нм. Разница между (n1) и (n2) по меньшей мере 0,03. Наночастицы выбраны из группы, состоящей из TiO2, ZrO2, Y2O3, ZrO2, стабилизированного посредством Y2O3, HfO2, Ta2O5, Nb2O5, TeO2, BaTiO3 и SiC. Устройство (1) освещения содержит полупроводниковую слоистую структуру (5), керамический элемент (7) и соединительную область (8), содержащую указанную композицию. Изобретения позволяют улучшить выход света. 4 н. и 9 з.п. ф-лы, 7 ил.

Группа изобретений относится к базовым элементам светотехнических безламповых устройств на основе светодиодов и к способам изготовления таких элементов. Технический результат - повышение эффективности отвода тепла от светодиодов, увеличение устойчивости блока к ударным и вибрационным нагрузкам, надежность работы при разогреве до высоких температур, уменьшение энергоемкости и материалоемкости производства, исключение экологически вредных отходов и испарений, присущих классической толстопленочной технологии. Достигается тем, что в интегрированном блоке для светодиодного светильника токопроводящая цепь выполнена в виде металлических проводников, адгезионно укрепленных на диэлектрическом слое, материал которого обладает температурным коэффициентом расширения, равным таковому для алюминиевого сплава с точностью плюс-минус 10%, диэлектрический слой нанесен непосредственно на корпус и, в свою очередь, адгезионно укреплен на нем, а светодиод укреплен своим теплоотводящим выводом на корпусе методом пайки. При этом в качестве диэлектрической пасты применена низкотемпературная не содержащая свинца и кадмия стеклосодержащая паста, а в качестве проводниковой пасты применена не содержащая свинца низкотемпературная паста на основе серебра. 2 н. и 7 з.п. ф-лы, 2 ил.

Группа изобретений относится к области светотехники, а именно к осветительным устройствам для неподвижной установки модульной конструкции, с использованием светодиодов, и корпуса как его составной части в качестве несущего элемента, и предназначена для уличного, промышленного, бытового и архитектурно-дизайнерского освещения. Техническим результатом является повышение надежности. Технический результат достигается за счет использования монолитного светопрозрачного защитного из ударопрочного материала экрана с линзами, модульной его конструкцией, независимым изолированием светоиспускающей зоны, зоны контактов светового модуля, интерфейсов источника питания и самого источника питания. При этом источник питания размещен в наружной части замкнутого сквозного контура корпуса внутри светильника, а также конструкцией самого корпуса, выполненного в виде тянутого профиля с U-образными каналами, к которым осуществляется крепление как печатных плат световых модулей, так и экранов, и сквозным замкнутым контуром, который служит отсеком для источника питания и сводит к минимуму взаимный теплообмен светильника и источника питания. При этом источник питания расположен внутри светильника. 2 н.п. ф-лы, 12 ил.

Изобретение может быть использовано при изготовлении светоизлучающих приборов, испускающих ультрафиолетовое излучение. Люминесцентный материал имеет химическую формулу (Y1-xLux)9LiSi6O26:Ln, где Ln - трехвалентный редкоземельный металл, выбранный из Pr, Nd или их смеси; 0,0≤x≤1,0. Люминесцентный материал имеет максимум испускания в коротковолновом диапазоне ультрафиолетового излучения - 200-280 нм при возбуждении излучением в ультрафиолетовом спектральном диапазоне. Светоизлучающее устройство содержит разрядную лампу, снабженную разрядным сосудом, заполненным газом, поддерживающим разряд. По меньшей мере часть стенки сосуда покрыта указанным люминесцентным материалом. Изобретение обеспечивает улучшенный бактерицидный эффект. 4 н. и 3 з.п. ф-лы, 10 ил., 4 пр.

Изобретение относится к химической промышленности и светотехнике и может быть использовано при изготовлении систем освещения. Светоизлучающее устройство содержит источник света для излучения света с первой длиной волны и элемент, преобразующий свет с первой длиной волны в свет со второй длиной волны. Элемент, преобразующий длину волны, содержит полимерный материал-носитель, который содержит сложнополиэфирную основную цепь, содержащую ароматическую составляющую, и по меньшей мере один материал, преобразующий длину волны, относящийся к производным перилена. Изобретение обеспечивает увеличение срока службы светоизлучающего устройства и стабильность его работы. 14 з.п. ф-лы, 1 табл., 1 ил., 1 пр.
Наверх