Электролитический способ получения ультрадисперсного порошка гексаборида гадолиния

Изобретение относится к электролитическим способам получения чистого ультрадисперсного порошка гексаборида гадолиния. Порошок синтезируют электролизом из расплавленной среды, включающей хлорид гадолиния и фторборат калия в фоновом электролите при температуре 550±10°C в атмосфере очищенного и осушенного аргона. В качестве фонового электролита используют эвтектическую смесь хлоридов калия, натрия и цезия при следующем соотношении компонентов, мас.%: хлорид гадолиния 3,0÷7,0, фторборат калия 6,0÷10,0, эвтектическая смесь хлоридов калия, натрия и цезия - остальное. Изобретение позволяет получить чистый ультрадисперсный порошок гексаборида гадолиния, повысить скорость синтеза целевого продукта из расплавленного электролита и снизить энергозатраты. 1 з.п. ф-лы, 4 пр.

 

Изобретение относится к электролитическим способам получения чистого ультрадисперсного порошка гексаборида гадолиния.

Наиболее близким является способ получения гексаборида гадолиния при помощи электролиза расплавленных сред [Кушхов Х.Б., Узденова А.С., Мукожева Р.А., Виндижева М.К., Салех М.М.А. Электролитический способ получения ультрадисперсного порошка гексаборида гадолиния. Заявка №2011120024/07(029576) Решение о выдаче патента от 21.02.2012]. Электролиз осуществляется в стеклоуглеродном тигле, служащем одновременно анодом или алундовом тигле; катод изготовляется из вольфрама. В состав ванны для электролиза входят хлорид гадолиния и фторборат калия, фоновым электролитом служила эквимольная смесь хлоридов натрия и калия. Температура электролиза смесей составляет 690-710°C, напряжение на ванне от -2,6 до -2,8 В, плотность тока 0,1-1,0 А/см2. Состав ванны для получения гексаборида гадолиния: GdCl3+KBF4+NaCl+KCl.

Недостатками этого способа являются высокая температура синтеза.

Задачей изобретения является получение чистого ультрадисперсного порошка гексаборида гадолиния, повышение скорости синтеза целевого продукта из расплавленного электролита и снижение энергозатрат.

Сущность изобретения заключается в том, что осуществляется совместное электровыделение гадолиния и бора из хлоридного расплава на катоде и последующее взаимодействие их на атомарном уровне с образованием ультрадисперсных порошков гексаборида гадолиния. Процесс осуществляется в трехэлектродной кварцевой ячейке, где в качестве катода используется вольфрамовый стержень; электрод сравнения - стеклоуглеродная пластина; анод и одновременно контейнер - стеклоуглеродный тигель (также использовался алундовый тигель в качестве контейнера для расплава и стеклоугле-родная пластина в качестве анода).

Синтез ультрадисперсного порошка гексаборида гадолиния проводят посредством потенциостатического электролиза из эквимольного расплава KCl-NaCl-CsCl, содержащего трихлорид гадолиния и фторборат калия. По-тенциостатический электролиз эквимольного расплава KCl-NaCl-CsCl-GdCl3-KBF4 проводят на вольфрамовом электроде в пределах от -2,4 до -2,6 В относительно стеклоуглеродного квазистационарного электрода сравнения. Синтез проводят в атмосфере очищенного и осушенного аргона. Катодно-солевую грушу отмывают от фторида гадолиния во фториде калия.

В качества источника гадолиния используют безводный трихлорид гадолиния, в качестве источника бора - фторборат калия, в качестве фонового электролита - эвтектическую смесь хлоридов калия, натрия и цезия при следующем соотношении компонентов, мас.%:

хлорид гадолиния 3,0÷7,0;

фторборат калия 6,0÷10,0;

остальное - эвтектическая смесь хлоридов калия, натрия и цезия.

Электролиз ведут в потенциостатическом режиме при температуре 550±10°C, оптимальной для данного растворителя. Возможно осуществление синтеза и при более высокой температуре, однако повышение температуры приводит к испарению расплава, увеличению давления пара над расплавом, потери фторбората калия ввиду его термической нестойкости.

Выбор компонентов электролитической ванны произведен на основании термодинамического анализа и кинетических измерений совместного электровыделения гадолиния и бора из хлоридных расплавов. Из соединений гадолиния и бора, не содержащих кислород, хлорид гадолиния и фторборат калия являются достаточно низкоплавкими и хорошо растворимыми в эквимольном расплаве KCl-NaCl-CsCl. Данный фоновый электролит выбран из следующих соображений: напряжение разложения расплавленной смеси KCl-NaCl-CsCl больше напряжения разложения для расплавов GdCl3 и KBF4, к тому же хлориды щелочных металлов хорошо растворимы в воде.

Фазовый состав идентифицирован методом рентгенофазового анализа на дифрактометре ДРОН-6, результаты констатировали наличие только фазы GdB6.

Пример 1. В стеклоуглеродный тигель объемом 40 см3 помещали солевую смесь массой 37,61 г, содержащую 2,53 г GdCl3 (6,7 мас.%); 3,63 г KBF4 (9,66 мас.%); 20,67 г CsCl (54,97 мас.%), 5,48 г KCl (14,57 мас.%); 5,3 г NaCl (14,1 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку, и в атмосфере сухого аргона выдерживают до температуры расплавления системы (550°C). По достижении рабочей температуры в расплав опускают вольфрамовый катод. Электролиз проводят при потенциале -2,4÷2,5 В относи-тельно стеклоуглеродного электрода сравнения (плотность тока -0,85 А/см2), продолжительность электролиза 110÷120 мин. Катодно-солевую грушу отмывают от фторида гадолиния во фториде калия. Размер частиц полученного порошка гексаборида гадолиния 50-70 nm.

Пример 2. В стеклоуглеродный тигель объемом 40 см3 помещали солевую смесь массой 35,8 г, содержащую 2,2 г GdCl3 (6,1 мас.%); 2,15 г KBF4 (6,05 мас.%); 20,67 г CsCl (57,75 мас.%), 5,48 г KCl (15,3 мас.%); 5,3 г NaCl (14,8 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы (550°C). По достижении рабочей температуры в расплав опускают вольфрамовый катод. Электролиз проводят при потенциале -2,5÷-2,6 В относительно стеклоуглеродного электрода сравнения (плотность тока -0,12 А/см2), продолжительность электролиза 110÷120 мин. Катодно-солевую грушу отмывают от фторида гадолиния во фториде калия. Размер частиц полученного порошка гексаборида гадолиния 90-110 nm.

Пример 3. В стеклоуглеродный тигель объемом 40 см3 помещали солевую смесь массой 33,87 г, содержащую 1,9 г GdCl3 (5,6 мас.%); 2,73 г KBF4 (8,05 мас.%); 19,94 г CsCl (58,9 мас.%), 4,74 г KCl (14,0 мас.%); 4,56 г NaCl (13,45 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона выдерживают до температуры расплавления системы (550°C). По достижении рабочей температуры в расплав опускают вольф-рамовый катод. От источника подают ток -0,6 А (плотность тока -0,5 А/см). Потенциал -3,5 В, продолжительность электролиза 80÷90 мин. Катодно-солевую грушу отмывают от фторида гадолиния во фториде калия. Размер частиц полученного порошка гексаборида гадолиния 70-90 nm.

Пример 4. В алундовый тигель объемом 60 см3 помещали солевую смесь массой 58,43 г, содержащую 2,0 г GdCl3 (3,4 мас.%); 3,83 г KBF4 (6,6 мас.%); 36,3 г CsCl (62,1 мас.%), 8,3 г KCl (14,2 мас.%); 8,0 г NaCl (13,7 мас.%). Тигель с солевой смесью помещают в кварцевую ячейку и в атмосфере сухого аргона, выдерживают до температуры расплавления системы (550°C). По достижении рабочей температуры в расплав опускают вольфрамовый катод. Электролиз проводят при потенциале -2,4÷-2,5 В относительно стеклоуглеродного электрода сравнения (плотность тока -0,4 А/см2), продолжительность электролиза 110-5-120 мин. Катодно-солевую грушу отмывают от фторида гадолиния во фториде калия. Размер частиц полученного порошка гексаборида гадолиния 80-110 nm.

Техническим результатом является: получение чистого ультрадисперсного порошка гексаборида гадолиния, повышение скорости синтеза целевого продукта из расплавленного электролита и снижение энергозатрат.

1. Способ электролитического получения ультрадисперсного порошка гексаборида гадолиния, включающий синтез гексаборида гадолиния из расплавленной среды, включающей хлорид гадолиния и фторборат калия, в фоновом электролите, отличающийся тем, что синтез проводят из расплавленной среды при температуре 550±10°C в атмосфере очищенного и осушенного аргона, а в качестве фонового электролита используют эвтектическую смесь хлоридов калия, натрия и цезия при следующем соотношении компонентов, мас.%:

хлорид гадолиния 3,0÷7,0
фторборат калия 6,0÷10,0
эвтектическая смесь
хлоридов калия,
натрия и цезия остальное

2. Способ по п.1, отличающийся тем, что синтез проводят при плотностях тока от -0,1 до -1,0 А/см2 и потенциалах электролиза от -2,4 до -2,6 В относительно стеклоуглеродного квазистационарного электрода сравнения.



 

Похожие патенты:
Изобретение относится к электролитическим способам получения чистого гексаборида гадолиния. .
Изобретение относится к электролитическим способам получения чистого гексаборида церия. .

Изобретение относится к области электрохимического получения металлических порошков из расплавленных солей, в частности для получения высоко- и нанодисперсных порошков металлов и сплавов.
Изобретение относится к области электрохимического получения порошков металлов из расплавленных солей и может быть использовано в химической, электрохимической промышленности, энергетике.
Изобретение относится к порошковой металлургии, в частности получению высокочистых наноразмерных порошков тугоплавких металлов различного гранулометрического состава и микроструктуры, применяемых в производстве танталовых и ниобиевых конденсаторов и иных изделий и полупроводников.
Изобретение относится к способу получения порошков тугоплавких металлов. .
Изобретение относится к электролитическим способам получения неорганических соединений, в частности соединений празеодима. .

Изобретение относится к электрохимическому синтезу соединений вольфрама и может быть использовано для получения нанодисперсного чистого порошка карбида вольфрама, обладающего развитой поверхностью, электрокаталитическими свойствами.

Изобретение относится к электрохимическому синтезу тугоплавких соединений вольфрама и может быть использовано для получения нанодисперсных твердосплавных композиций на основе карбида вольфрама и кобальта, обладающих высокими значениями температур плавления, твердости, прочности, упругости, химической инертностью.
Изобретение относится к способу получения состоящих из металлического титана или титанового сплава полуфабрикатов или готовых к использованию изделий. .

Изобретения могут быть использованы в области охраны окружающей среды. Способ получения катализатора включает введение неблагородного металла в виде гидроксида аммония или аммиачного комплекса, или в виде органического аминового комплекса, или в виде гидроксидного соединения в активный в окислительно-восстановительных реакциях кубический флюоритный CeZrOx материал при основных условиях.
Изобретение относится к области аналитической химии, а именно к способу люминесцентного определения тербия. Способ включает перевод тербия в люминесцирующее соединение с органическим реагентом.

Изобретение относится к химической промышленности, к производству наноразмерных порошков оксидов металлов для мелкозернистой керамики широкого спектра. Способ получения порошка диоксида церия включает стадии: получение водного 0,05М раствора нитрата церия или ацетата церия, используя Се(NО3)3·6Н2O или Се(СН3СОО)3·Н2O, получение спиртового раствора стабилизатора золя органического N-содержащего соединения: N,N-диметилоктиламина, тетраэтиламмоний гидроксида или моноэтаноламина с концентрацией 0,45-3,30М, 0,37М и 0,016М, получение золя в водно-органической системе соединением составленных растворов, упаривание водно-органической системы, формирование геля и термообработка геля в интервале температур 95-500°С по ступенчатому графику, причем в качестве стабилизатора золя используют одно из следующих низкомолекулярных органических N-содержащих соединений (N): N,N-диметилоктиламин, тетраэтиламмоний гидроксид, моноэтаноламин в виде спиртового раствора при мольном отношении N/металл, равном 1-20.

Изобретение относится к технологии получения новых соединений с высокими значениями магнитосопротивления и может быть использовано в химической промышленности, микроэлектронике, для создания магниторезистивных датчиков в криогенной и космической магнитометрии.

Изобретение может быть использовано в химической промышленности. Способ переработки фосфогипса включает стадийное агитационное сернокислотное выщелачивание редкоземельных металлов (РЗМ) и фосфора с подачей серной кислоты на головную стадию, использование полученного раствора выщелачивания головной стадии на последующих стадиях выщелачивания, выделение нерастворимого остатка из пульпы хвостовой стадии и его водную промывку, переработку раствора выщелачивания хвостовой стадии с получением маточного раствора, использование маточного и промывного растворов в обороте для выщелачивания.

Изобретение может быть использовано в микроэлектронике. Для получения сложного оксида иттрия, бария и меди YBa2Cu3O7-δ из водного раствора, содержащего нитраты иттрия, бария и меди, проводят совместную сорбцию иттрия, бария, меди в заданном мольном соотношении Y:Ba:Cu=1:2:3 на стадии сорбции из указанного раствора на карбоксильном катионите КБ-4п-2.

Изобретение относится к технологии производства наноматериалов для получения оксидных топливных элементов, тонких покрытий, пленок, обладающих высокой ионной проводимостью.

Изобретение относится к области переработки отходов, в частности золошлаковых отходов ТЭЦ. Золу от сжигания углей помещают в реакционную зону, добавляют углеродный сорбент в количестве 10-25 кг на тонну золы.
Изобретение относится к области неорганической химии, а именно к получению порошков, которые могут применяться в лазерной технике и оптическом приборостроении. Способ получения порошков фторсульфидов редкоземельных элементов (РЗЭ) включает приготовление шихты и последующую ее термическую обработку.
Изобретение относится к неорганической химии и касается способа получения комплексного хлорида скандия и щелочного металла. Металлический скандий смешивают с дихлоридом свинца и солью щелочного металла.

Изобретение относится к материалу смачиваемого анода алюминиевого электролизера. Порошок диборида титана получают при проведении карботермической реакции между мелкодисперсными порошковыми компонентами шихты из безводного диоксида титана, борного ангидрида или борной кислоты и углерода в виде сажи.
Наверх