Способ получения многослойного покрытия для режущего инструмента

Изобретение относится к способу нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Способ включает вакуумно-плазменное нанесение многослойного покрытия. Сначала наносят нижний слой из нитрида соединения титана, ниобия и алюминия при их соотношении, мас.%: титан 81,0 - 89,0, ниобий 4,0 - 8,0, алюминий 7,0 - 11,0, затем - промежуточный слой из карбонитрида соединения титана, ниобия и алюминия при их соотношении, мас.%: титан 81,0 - 89,0, ниобий 4,0 - 8,0, алюминий 7,0 - 11,0, и верхний - из нитрида соединения титана и ниобия при их соотношении, мас.%: титан 88,0 - 94,0, ниобий 6,0 - 12,0. Нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют составными из титана и ниобия и располагают противоположно друг другу, а третий изготавливают составным из титана и алюминия и располагают между ними, причем нижний и промежуточный слои наносят с использованием всех трех катодов, а верхний слой - с использованием первого и второго катодов. Технический результат - повышение работоспособности режущего инструмента. 1 табл.

 

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Известен способ повышения стойкости режущего инструмента (РИ), при котором на его поверхность вакуумно-плазменным методом наносят износостойкое покрытие (ИП) из нитрида титана (TiN) или карбонитрида титана (TiCN) (см. Табаков В.П. Работоспособность режущего инструмента с износостойкими покрытиями на основе сложных нитридов и карбонитридов титана. Ульяновск: УлГТУ, 1998. 123 с.).

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного способа, относится то, что в известном способе наносимое покрытие не обеспечивает такой же высокой эффективности при работе режущего инструмента с этим покрытием в условиях прерывистого резания, в частности, при фрезеровании, как при непрерывном резании.

Наиболее близким способом того же назначения к заявленному изобретению по совокупности признаков является способ нанесения многослойного покрытия, раскрытый в описании к патенту на изобретение RU 2269605 С1, принятый за прототип.

К причинам, препятствующим достижению указанного ниже технического результата при использовании известного режущего инструмента с покрытием, принятого за прототип, относится то, что в известном способе многослойное покрытие обладает недостаточной твердостью, а, следовательно, трещиностойкостью и низкими сжимающими остаточными напряжениями. В результате покрытие плохо сопротивляется процессам износа и разрушения и быстро разрушается при резании.

Одним из путей повышения стойкости и, как следствие, работоспособности РИ с покрытием является нанесение покрытий многослойного типа со слоями с различными физико-механическими свойствами. Наличие в покрытии верхнего слоя, обладающего высокими твердостью и контактными характеристиками, способствует снижению интенсивности износа РИ с многослойным покрытием. Для повышения прочности сцепления покрытия с инструментальной основой оно должно иметь в своем составе нижний слой с высокими адгезионными свойствами. Кроме того, увеличение твердости нижнего слоя покрытия также способствует дополнительному снижению интенсивности износа РИ с многослойным покрытием. Промежуточный слой должен выполнять следующие функции. Во-первых, обеспечивать повышение прочности сцепления слоев за счет его формирования из элементов верхнего и нижнего слоев. Во-вторых, иметь высокие твердость и сжимающие остаточные напряжения для снижения интенсивности износа и трещинообразования в покрытии при прерывистом резании. В-третьих, способствовать повышению трещиностойкости всего покрытия за счет появления дополнительных границ между слоями.

Технический результат - повышение работоспособности РИ.

Указанный технический результат при осуществлении изобретения достигается тем, что наносят нижний слой из нитрида соединения титана, ниобия и алюминия при их соотношении, мас.%: титан 81,0-89,0, ниобий 4,0-8,0, алюминий 7,0-11,0; промежуточный - из карбонитрида соединения титана, ниобия и алюминия при их соотношении, мас.%: титан 81,0-89,0, ниобий 4,0-8,0, алюминий 7,0-11,0; верхний - из нитрида соединения титана и ниобия при их соотношении, мас.%: титан 88,0-94,0, ниобий 6,0-12,0, а нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют составными из титана и ниобия и располагают противоположно друг другу, а третий изготавливают составным из титана и алюминия и располагают между ними, причем нижний и промежуточный слои наносят с использованием всех трех катодов, а верхний слой - с использованием первого и второго катодов.

Такая структура наносимого покрытия позволяет получить высокие остаточные напряжения и твердость из-за наличия в покрытии промежуточного слоя. При этом нижний и промежуточный слои обладают высокой твердостью и трещиностойкостью из-за дополнительного легирования материала слоев покрытий и наличию в их структуре микрослоистости, получаемой при нанесении покрытий по предлагаемой схеме расположения катодов.

Сущность изобретения заключается в следующем. В покрытии при резании происходят процессы трещинообразования, приводящие к его разрушению. Кроме того, из-за недостаточной прочности сцепления с инструментальной основой и слоев внутри многослойного покрытия возможно разрушение последнего в результате адгезионно-усталостных явлений на контактных площадках. В этих условиях покрытие должно иметь слоистую структуру для торможения трещин и высокие сжимающие напряжения. Слои покрытия должны обладать также высокой твердостью для повышения износо- и трещиностойкости. При этом слои многослойного покрытия должны иметь высокую прочность связи между собой, что обеспечивается их высоким сродством друг с другом из-за наличия общих элементов.

Пластины с покрытиями, полученные с отклонениями от указанной технологии получения, показали более низкие результаты.

Для экспериментальной проверки заявленного способа было нанесено покрытие-прототип с соотношением слоев, соответствующим оптимальному значению, указанному в известном способе, а также трехслойное покрытие по предлагаемому способу.

Нанесение предлагаемого покрытия осуществляется следующим образом. Твердосплавные пластины МК8 (размером 4,7×12×12 мм) промывают в ультразвуковой ванне, протирают ацетоном, спиртом и устанавливают на поворотном устройстве в вакуумной камере установки «Булат-6», снабженной тремя катодами, расположенными горизонтально в одной плоскости. Используются расположенные противоположно друг другу первый и второй составные катоды из титана и ниобия, и третий составной катод из титана и алюминия, расположенный между ними. Камеру откачивают до давления 6,65-10-3 Па, включают поворотное устройство, подают на него отрицательное напряжение 1,1 кВ, включают один катод и при токе дуги 100 А производят ионную очистку и нагрев пластин до температуры 560-580°С. Ток фокусирующей катушки 0,4 А. Затем при отрицательном напряжении 160 В, токе катушек 0,3 А и подаче реакционного газа азота включают все три катода и осаждают нижний слой покрытия TiNbAlN толщиной 2,0 мкм. Промежуточный слой покрытия TiNbAlCN толщиной 2,0 мкм наносят при отрицательном напряжении 160 В, токе катушек 0,3 А и включенных трех катодах при подаче реакционного газа, состоящего из смеси азота и ацетилена (60% азота и 40% ацетилена (мас.)). Верхний слой покрытия TiNbN толщиной 2,0 мкм наносят при отрицательном напряжении 160 В, токе катушек 0,3 А, включенных первом (из титана и ниобия) и втором (из титана и ниобия) катодах и подаче реакционного газа азота. Затем отключают испарители, подачу реакционного газа, напряжение и вращение приспособления. Через 15-20 мин камеру открывают и извлекают инструмент с покрытием.

Микротвердость покрытий определяли на микротвердомере «ПМТ-3» под нагрузкой 100 г. Остаточные напряжения определяли на рентгеновском дифрактометре «ДРОН-3М» с использованием фильтрованного СuКα-излучения.

Стойкостные испытания режущего инструмента проводили при симметричном торцовом фрезеровании заготовок из стали 5ХНМ на станке 6Р12. Испытывали твердосплавные пластины марки МК8, обработанные по известному и предлагаемому способам. Режимы резания были следующими: скорость резания V=247 м/мин, подача S=0,4 мм/зуб, глубина резания t=1,5 мм, ширина фрезерования В=20 мм. За критерий износа была принята величина фаски износа по задней поверхности h3=0,4 мм.

В табл.1 приведены результаты испытаний РИ с полученными покрытиями.

Таблица 1
Результаты испытаний РИ с покрытием
Материал покрытия Химический состав слоев покрытия (соотношение металлических компонентов), мас.% Микротвердость, ГПа Остаточн. Напряж., МПа Стойкость, мин Примечание
1 слой 2 слой 3 слой
Ti Аl Nb Ti Al Nb Ti Nb
TiN - 29,2 -775 45 Аналог
TiCrAl-TiCrAlN-TiCrN 86,0 9,0 5,0∗ 86,0 9,0 5,0∗ 92,5 7,5∗ 37,6 -1180 221 Прототип
TiNbAlN-TiNbAlCN-TiNbN 87,0 9,0 4,0 87,0 9,0 4,0 94,0 6,0 40,4 -1378 249
87,0 7,0 6,0 87,0 7,0 6,0 91,0 9,0 41,5 -1498 300
85,0 9,0 6,0 85,0 9,0 6,0 91,0 9,0 41,9 -1571 314
83,0 11,0 6,0 83,0 11,0 6,0 91,0 9,0 41,1 -1501 294
83,0 9,0 8,0 83,0 9,0 8,0 88,0 12,0 40,1 -1386 245
Прим.: ∗ - содержание хрома в слоях покрытия

Как видно из приведенных в таблице 1 данных, стойкость пластин, с покрытиями, нанесенными по предлагаемому способу, выше стойкости пластин с покрытием, нанесенным по способу-прототипу в 1,11-1,42 раза.

Способ получения многослойного покрытия для режущего инструмента, включающий вакуумно-плазменное нанесение многослойного покрытия, отличающийся тем, что наносят нижний слой из нитрида соединения титана, ниобия и алюминия при их соотношении, мас.%: титан 81,0 - 89,0, ниобий 4,0 - 8,0, алюминий 7,0 - 11,0, промежуточный - из карбонитрида соединения титана, ниобия и алюминия при их соотношении, мас.%: титан 81,0 - 89,0, ниобий 4,0 - 8,0, алюминий 7,0 -11,0, а верхний - из нитрида соединения титана и ниобия при их соотношении, мас.%: титан 88,0 - 94,0, ниобий 6,0 - 12,0, причем нанесение слоев покрытия осуществляют расположенными горизонтально в одной плоскости тремя катодами, первый и второй из которых выполняют составными из титана и ниобия и располагают противоположно друг другу, а третий изготавливают составным из титана и алюминия и располагают между ними, причем нижний и промежуточный слои наносят с использованием всех трех катодов, а верхний слой - с использованием первого и второго катодов.



 

Похожие патенты:
Изобретение относится к области машиностроения, в частности к способу изготовления режущих пластин, и может найти применение при производстве металлорежущего инструмента.

Изобретение относится к области машиностроения и металлургии, в частности к способу сборки шатунно-поршневого узла. Осуществляют установку поршневого пальца в отверстие поршня и установку шатуна на поршневой палец.

Изобретение относится к способу получения пленочного металлсодержащего углеродного наноматериала, который может быть использован в различных элементах электроники, в частности при разработке фоторезисторов, фотоприемников, фотодиодов и элементов фотовольтаики.

Изобретение может быть использовано при обработке длинномерных изделий для модифицирования поверхности и нанесения функциональных покрытий с использованием технологий вакуумной ионно-плазменной обработки, ионной имплантации и нанесения покрытий.

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Для повышения работоспособности режущего инструмента вакуумно-плазменным методом наносят многослойное покрытие.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Для повышения работоспособности режущего инструмента на него вакуумно-плазменным методом наносят многослойное покрытие.

Изобретение относится к способам нанесения износостойких многослойных покрытий на режущий инструмент вакуумно-плазменным методом и может быть использовано в металлообработке.

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Для повышения работоспособности режущего инструмента вакуумно-плазменным методом наносят многослойное покрытие.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Для повышения работоспособности режущего инструмента на него вакуумно-плазменным методом наносят многослойное покрытие.

Изобретение относится к способам нанесения износостойких многослойных покрытий на режущий инструмент вакуумно-плазменным методом и может быть использовано в металлообработке.

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке.

Изобретение относится к способам получения режущих инструментов, используемых в металлообработке. Для повышения работоспособности режущего инструмента на него вакуумно-плазменным методом наносят многослойное износостойкое покрытие.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Для повышения работоспособности режущего инструмента проводят вакуумно-плазменное нанесение многослойного покрытия.

Изобретение относится к области металлургии, а именно к способам нанесения износостойких покрытий на режущий инструмент, и может быть использовано в металлообработке.

Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Для повышения работоспособности режущего инструмента проводят вакуумно-плазменное нанесение многослойного покрытия.

Изобретение относится к способам нанесения вакуумно-плазменным методом многослойных износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. Сначала наносят нижний слой из нитрида соединения титана, кремния и хрома при их соотношении, мас.%: титан 87,5-90,9, кремний 0,6-1,0, хром 8,5-11,5. Затем промежуточный слой из карбонитрида соединения титана, кремния и хрома при их соотношении, мас.%: титан 87,5-90,9, кремний 0,6-1,0, хром 8,5-11,5 и верхний - из нитрида соединения титана и кремния при их соотношении, мас.%: титан 98,5-99,1, кремний 0,9-1,5. Слои покрытия наносят расположенными горизонтально в одной плоскости тремя катодами. Первый и второй катоды выполняют из сплава титана и кремния и располагают противоположно друг другу, а третий изготавливают составным из титана и хрома и располагают между ними. Нижний и промежуточный слои наносят с использованием всех трех катодов, а верхний слой - с использованием первого и второго катодов. Повышается работоспособность режущего инструмента. 1 табл.
Наверх