Способ сушки гранулированных полимерных материалов

Способ относится к области химической промышленности и служит для сушки гранулированных полимерных материалов и композитов на их основе. Способ энергосберегающей сушки гранулированных полимерных материалов, включающий подачу высушиваемого материала сверху вниз и продув через высушиваемый материал теплоносителя. Отработанный в зоне сушки теплоноситель подается в верхнюю зону сушилки для предварительного подогрева поступающего материала в режиме противотока. Технический результат - повышение степени отработки теплоносителя по температуре для увеличения производительности сушилки. 2 ил.

 

Изобретение относится к области химической промышленности и служит для сушки гранулированных полимерных материалов и композитов на их основе.

Известен способ высокотемпературной сушки зерна (Окунь Г.С., Чижиков А.Г. Тенденции развития технологии и технических средств сушки зерна. - М.: ВНИИТЭИагропром, 1987. - С.6, рис.1). Сушка осуществляется путем подачи материала сверху вниз, а теплоноситель подается изнутри наружу. Этот способ позволяет осуществить высокотемпературный режим сушки и повысить равномерность сушки за счет циркуляции зерна в сушильной камере.

Существенным недостатком этого способа является неполное использование температурного потенциала сушильного агента, что значительно снижает технико-экономические показатели.

Из известных решений наиболее близким по технической сущности и достигаемому результату к изобретению является способ сушки зерна и гранулированных материалов (см. патент РФ RU 2171958 С1 по классу F26В 3/14, 17/12). Сушка осуществляется путем подачи материала сверху вниз, а теплоноситель пронизывает слой в поперечном направлении. Отработанный теплоноситель удаляется. При этом недостаточно полно используется потенциал сушильного агента. Степень отработки теплоносителя по температуре - не более 10…15%.

Задачей предлагаемого изобретения является повышение степени отработки теплоносителя по температуре для увеличения производительности сушилки. В результате использования указанного способа достигается более полная отработка теплоносителя при сопутствующем увеличении производительности. Указанный технический результат достигается тем, что отработанный в зоне сушки теплоноситель подается в зону предварительного нагрева материала, где контактирует в режиме противотока с поступающим холодным гранулированным материалом и прогревает его. В результате в зону изотермической сушки полимерный материал поступает предварительно прогретым до температуры, близкой к температуре теплоносителя, что положительно отражается на сокращении времени сушки и приводит к увеличению производительности аппарата в целом.

При производстве и переработке гранулированных полимерных материалов одной из стадий является глубокая сушка до влагосодержания (0,01-0,05)%, причем указанную величину влагосодержания должны иметь все единичные гранулы полимера. Появление большой неоднородности по влагосодержанию отдельных гранул отрицательно сказывается на качестве изделий из полимера (снижается качество поверхности, понижается прочность и т.п.). Столь низкое влагосодержание достигается только при продолжительном времени сушки в условиях, близких к изотермическим (Рудобашта С.П., Карташов Э.М. Диффузия в химико-технологических процессах. М.: КолосС, 2010. С.337-342;

Рудобашта С.П., Дмитриев В.М., Плановский А.Н. Аналитический расчет процесса глубокой сушки гранулированных полимерных материалов в шахтных сушилках // Хим. и нефт. Машиностроение, 1979. №4. С.14).

Изотермические условия сушки достигаются путем интенсивного прогрева гранулированного материала при скорости теплоносителя 2…4 м/с (что реализуется в зоне прогрева) и дальнейшей сушки в относительно спокойной гидродинамической обстановке (скорость теплоносителя 0,05-0,1 м/с) сушильной камеры с сетчатыми стенками. Это обусловлено чрезвычайно низкими значениями коэффициента диффузии в полимерах. Интенсификация процесса сушки может быть достигнута только путем повышения температуры высушиваемого полимерного материала. В предложенном способе нагрев и сушка гранулированных полимеров осуществляются:

1) нагрев гранулированного материала производится отработанным теплоносителем в зоне нагрева в режиме противотока со скоростью 2…4 м/с;

2) сушка в режиме поперечного движения теплоносителя со скоростью 0,05…0,1 м/с, что оптимально для процесса сушки.

Скорость в зоне сушки и в зоне нагрева при одном и том же расходе теплоносителя определяются площадью поперечного сечения аппарата в указанных зонах. Это обстоятельство позволяет оптимально проводить как процесс нагрева, так и процесс сушки. При этом температура теплоносителя на входе в зону сушки аппарата составляет 120…160°С, на выходе из зоны сушки - на 3…5°С меньше, на выходе из зоны нагрева - на 3…5°С выше начальной температуры материала. При такой организации подачи теплоносителя создаются условия для полной отработки потенциала теплоносителя (осуществляется эффективная функция энергосбережения).

В реальных промышленных сушилках для полимерных гранулированных материалов отработка теплоносителя по температуре составляет 10…15%. Это связано с тем, что реализуется процесс изотермической сушки, при котором температура отработанного теплоносителя на 3…5°С выше температуры высушенного материала (Кавецкий Г.Д. Оборудование для производства пластмасс. М.: Химия, 1986. - 224 с.). При реализации предлагаемого способа добавляется стадия предварительного нагрева материала отработанным теплоносителем, что существенно повышает степень отработки (до 95…97%).

Сущность изобретения поясняется чертежами. На фиг.1 схематически изображена схема реализации способа сушки гранулированных полимерных материалов в шахтной сушилке; на фиг.2 - схема движения теплоносителя и высушиваемого материала в зонах предварительного нагрева и изотермической сушки.

Предлагаемый способ реализуется использованием устройства для сушки, которое содержит: корпус 3, патрубок подачи теплоносителя 1, узел подачи влажного полимера (циклон пневмотранспорта) 2, раздающие и сборные коаксиальные диффузоры 4 и 6, сушильную камеру с сетчатыми стенками 5, секторный питатель 7.

Высушиваемый материал подается сверху вниз при помощи пневмотранспорта, далее поступает в зону формирования слоя, движется по раздающим коаксиальным диффузорам 4 и поступает в сушильную камеру с сетчатыми стенками 5. Скорость движения материала задается секторным питателем 7. На практике скорость движения составляет 1…2 м/ч. Время сушки основных полимерных материалов (полиамида, полиолефины, поликарбонаты и т.д.) с размерами гранул 3…5 мм составляет при температуре 130…150°С 3…5 ч. В зоне сушки теплоноситель подается в радиальном направлении для обеспечения равномерного высушивания материала по всей толщине. Материал в зону сушки для ускорения удаления влаги подается предварительно подогретым. Предварительный нагрев гранулята осуществляется теплоносителем, отработанным в зоне сушки, но еще имеющим высокий температурный потенциал (изменение температуры теплоносителя в зоне сушки составляет 2…3°С). В зоне нагрева движение материала и теплоносителя осуществляется в режиме противотока, что позволяет наиболее полно использовать температурный потенциал теплоносителя. На выходе из зоны нагрева теплоноситель дополнительно пронизывает слой материала, находящегося в зоне загрузки. В итоге температура теплоносителя на выходе превышает температуру материала на 3…5°С. Таким образом, удается полностью использовать температурный потенциал теплоносителя.

На выходе из зоны сушки высушенный материал имеет некоторое распределение влагосодержания по телу гранулы. Для выравнивания влагосодержания в отдельных гранулах с целью обеспечения условий переработки волокнообразующих полимерных материалов предназначена зона термостатирования. Как известно, волокнообразующие полимерные материалы (капрон, лавсан и т.д.) требуют определенной величины влагосодержания, выше которой в волокнах образуются пузырьки водяного пара, создающие дефекты волокон. При более низком влагосодержании ухудшаются условия процесса литья через фильеры. Таким образом, наличие зоны термостатирования приводит к выравниванию влагосодержания внутри гранул, что создает оптимальные условия для процесса волокнообразования.

Использование предлагаемого способа обеспечивает по сравнению с существующими следующие преимущества:

1. Подача гранулированного полимерного материала в зону сушки уже прогретым до температуры, близкой к температуре теплоносителя;

2. Отработанный теплоноситель не удаляется из сушилки, а используется для нагрева поступающего влажного гранулированного полимерного материала;

3. Сушка осуществляется в режиме поперечной подачи теплоносителя, что положительно сказывается на равномерности влагосодержания отдельных гранул полимерного материала. Поперечная продувка тонких слоев гранулята улучшает однородность по конечному влагосодержанию материала;

4. В зоне нагрева реализуется наиболее оптимальный с точки зрения теплообмена режим противотока, при котором на выходе из зоны температура отработанного теплоносителя близка к начальной температуре материала;

5. Указанная организация движения теплоносителя позволяет повысить отработку теплоносителя по температуре до 95…97%.

Способ энергосберегающей сушки гранулированных полимерных материалов, включающий подачу высушиваемого материала сверху вниз и продув через высушиваемый материал теплоносителя, отличающийся тем, что отработанный в зоне сушки теплоноситель подается в верхнюю зону сушилки для предварительного подогрева в режиме противотока поступающего материала.



 

Похожие патенты:

Изобретение относится к сушке семян и зерна и может быть использовано в сельском хозяйстве. .

Изобретение относится к способам сушки семян и зерна и может быть использовано в сельском хозяйстве и в системе заготовок. .

Изобретение относится к сушке семян и зерна и может быть использовано в сельском хозяйстве. .

Изобретение относится к области шахтной сушилки для сыпучих материалов, например зерновых культур. .

Изобретение относится к автоматизации технологических процессов и может быть использовано при автоматизации процессов сушки и хранения зерновых культур, в частности масличных культур, например семян рапса, льна, амаранта, подсолнечника и т.д.

Изобретение относится к сушке семян и зерна и может быть использовано в сельском хозяйстве. .

Изобретение относится к способам сушки зерновых материалов, семян злаковых, зернобобовых и масличных культур, комбикормов, гранулированных и других сыпучих материалов и может быть использовано в сельском хозяйстве, пищевой и химической промышленности, в системе хлебопродуктов и хранения зерна, а также в смежных с ними отраслях промышленности.

Изобретение относится к сушке сыпучих материалов в конвективных сушилках, преимущественно для мелкосеменных материалов, и может быть использовано в сельском хозяйстве.

Изобретение относится к сушке и может быть использовано в сельском хозяйстве. .

Изобретение относится к способам сушки семян зерновых культур в переменном режиме и может найти применение в сельском хозяйстве

Изобретение относится к сушке семян и зерна и может быть использовано в сельском хозяйстве и в системе заготовок. Способ сушки семян и зерна, по которому их загружают, гравитационно перемещают через сушильные и охладительные зоны, подают агент сушки в сушильную зону, циклически высушивают, разгружают или охлаждают. Новое в способе то, что часть агента сушки отбирают из зоны сушки и реверсируют в охладительную зону. Устройство для сушки семян и зерна содержит загрузочный 1 и разгрузочный бункеры 12, сушильные 2 и охладительные 3 камеры, вентиляторы 6, 9, топку 10, средства загрузки и разгрузки, разделительную перегородку 13 между сушильными 2 и охладительными 3 камерами. Новое в устройстве то, что охладительные камеры 3 содержат кожух 4 с клапаном 14 и реверсивным вентилятором 5, разделительная перегородка - клапан 15 с возможностью осуществления реверса агента сушки из сушильных в охладительные 3 камеры. Изобретение должно обеспечить повышение производительности при циклической работе, а также при высушивании первой партии зерна. 2 н.п. ф-лы, 1 ил.

Изобретение относится к технике сушки сыпучих материалов, преимущественно, не предназначенных для пищевой промышленности. Способ сушки сыпучих углеродистых или минеральных материалов с влажностью, обеспечивающей сыпучее состояние материала, включает ввод по нескольким уровням тепла от теплоносителя в массу материала. Непосредственно над каждым уровнем ввода тепла от теплоносителя осуществляют отвод теплоносителя и/или пара, при этом расстояние между уровнем ввода тепла от теплоносителя и расположенным непосредственно над ним уровнем вывода теплоносителя и/или пара, а также между уровнем вывода теплоносителя и/или пара и расположенным непосредственно над ним уровнем ввода тепла от теплоносителя составляет не менее шестикратного максимального размера частицы материала, скорость теплоносителя составляет не менее 0,1 м/с, температура теплоносителя составляет не менее 130°С, тепло от теплоносителя вводят в непрерывно перемещающуюся сверху вниз массу. Установка для сушки сыпучих углеродистых или минеральных материалов по первому варианту осуществления способа содержит камеру, предназначенную для подачи в нее сыпучего материала, в полости камеры выполнены элементы ввода теплоносителя в камеру и элементы вывода теплоносителя из камеры, при этом каждый элемент ввода и вывода теплоносителя выполнен в виде канала, проходящего через полость камеры и сообщающегося с внутренней полостью камеры, каждый канал, предназначенный для ввода теплоносителя, сообщен с источником теплоносителя, установка содержит как минимум два яруса каналов ввода и вывода теплоносителя, при этом каждый ярус содержит выполненные на одном уровне каналы ввода теплоносителя и расположенные выше непосредственно над уровнем каналов ввода теплоносителя, на расстоянии от них каналы вывода теплоносителя, выполненные также на одном уровне, при этом расстояние между уровнем каналов ввода/вывода теплоносителя и расположенным непосредственно над ним уровнем каналов вывода/ввода теплоносителя составляет не менее шестикратного максимального размера частицы материала, также расстояние между соседними каналами, расположенными на одном уровне, составляет не менее шестикратного максимального размера частицы материала, источник теплоносителя предназначен для подачи в камеру теплоносителя - газа. Установка для сушки сыпучих углеродистых или минеральных материалов по второму варианту осуществления содержит камеру, предназначенную для подачи в нее сыпучего материала, в полости камеры выполнены элементы ввода тепла теплоносителя в камеру и элементы вывода из камеры пара, образующегося при сушке материала, при этом каждый элемент ввода тепла теплоносителя выполнен в виде закрытого канала, проходящего через полость камеры и сообщающегося с источником теплоносителя и с другими каналами ввода тепла теплоносителя, каждый элемент вывода пара выполнен в виде канала, проходящего через полость камеры и сообщающегося с внутренней полостью камеры, каждый канал, предназначенный для ввода тепла теплоносителя, сообщен с источником теплоносителя, установка содержит как минимум два яруса каналов ввода тепла теплоносителя и вывода пара, при этом каждый ярус содержит выполненные на одном уровне каналы ввода тепла теплоносителя и расположенные выше непосредственно над уровнем каналов ввода тепла теплоносителя, на расстоянии от них каналы вывода пара, выполненные также на одном уровне, при этом расстояние между уровнем каналов ввода тепла от теплоносителя и расположенным непосредственно над ним уровнем каналов вывода пара составляет не менее шестикратного максимального размера частицы материала, также расстояние между уровнем каналов вывода пара и расположенным непосредственно над ним уровнем каналов ввода тепла от теплоносителя составляет не менее шестикратного максимального размера частицы материала, источник теплоносителя предназначен для подачи в камеру теплоносителя - пара. Технический результат заключается в упрощении конструкции установки для сушки сыпучих материалов, повышении эффективности сушки. 3 н. и 15 з.п. ф-лы, 12 ил.

Изобретение относится к сушке семян и зерна и может быть использовано в сельском хозяйстве и в системе заготовок. Способ сушки семян и зерна, при котором их загружают, гравитационно перемещают сверху вниз через верхнюю, нижнюю сушильные и охладительную зоны сушки, вентилируют агентом сушки и охлаждающим газом соответственно и разгружают. Новым является то, что в верхнюю сушильную зону подают часть охлаждающего газа, которую рассчитывают по выражению Q о х = Q 1 ( t 1 − t в t 1 − 2 t 0 ) , tв, t1, t0 - температуры смеси газов, агента сушки и наружного воздуха соответственно, °C, Q1, Qox, - расход агента сушки и охлаждающего газа, подаваемых в верхнюю зону, м3/ч, кроме того, смесь газов реверсируют. Устройство содержит надсушильный и подсушильный 13 бункеры, верхнюю 2, нижнюю 3 сушильные и охладительную 4 камеры, вентиляторы 10, 12 агента сушки и охлаждающего газа, топку 11, средства загрузки 15 и разгрузки 14 материала. Новое в устройстве то, что снабжено воздуховодом 6 подключения верхней сушильной камеры 2 к вентилятору 12 охлаждающего газа и кожухом 19 для осуществления реверса смеси газов агента сушки с охлаждающим газом в верхнюю сушильную камеру 2. Изобретение должно повысить эффективность сушки. 2 н.п. ф-лы, 1 ил.

Изобретение относится к автоматизации технологических процессов и может быть использовано при автоматическом управлении процессами сушки и хранения зерновых культур, в частности зерна пшеницы, семян подсолнечника, пивоваренного солода и т.д. Способ управления процессами сушки и хранения зерна предусматривает предварительный подогрев влажного зерна отработанным сушильным агентом и последующую очистку сушильного агента от легких примесей в циклоне, его осушение и охлаждение в испарителе теплонасосной установки, рабочая и резервная секция которого попеременно переключаются с режима конденсации на режим регенерации; осушение, охлаждение и разделение сушильного агента на два потока, один из которых подают на сушку через конденсатор теплового насоса в режиме замкнутого цикла с подпиткой свежим сушильным агентом, а другой - на активное вентилирование зерна в силосы; измерение расхода, температуры и влагосодержания сушильного агента перед сушкой и активным вентилированием зерна с воздействием на мощность привода компрессора по расходу, температуре и влажности зерна, подаваемого на сушку, и дополнительно характеризуется тем, что сушку зерна осуществляют в двух последовательно расположенных зонах шахтной зерносушилки и зоне охлаждения, причем для нагревания и охлаждения сушильного агента используют парокомпрессионный двухступенчатый тепловой насос, холодный сушильный агент посредством вентиляторов направляют по двум потокам, один из которых подают в конденсатор второй ступени теплового насоса, а другой - на охлаждение зерна; при этом для стабилизации температуры в I зоне зерносушилки подают смесь горячего и холодного сушильного агента, причем часть горячего сушильного агента после конденсатора II ступени отводят на размораживание секции испарителя, работающей в режиме регенерации, с возвратом на сушку перед конденсатором II ступени в режиме замкнутого цикла, во II зону зерносушилки подают горячий сушильный агент, а в зону охлаждения - холодный; по расходу зерна на входе в зерносушилку устанавливают расход сушильного агента в зонах сушки и зоне охлаждения; по температуре сушильного агента на входе во II зоне сушки корректируют мощность привода компрессора второй ступени; по температуре сушильного агента в I зоне сушки устанавливают соотношение расходов горячего и холодного сушильного агента; при отклонении коэффициента теплопередачи k на охлаждающей поверхности рабочей секции испарителя первой ступени между отработанным сушильным агентом и хладагентом от заданного интервала значений в сторону уменьшения переключают рабочую секцию с режима конденсации на режим регенерации и осуществляют регенерацию охлаждающей поверхности горячим сушильным агентом, при этом компенсируют потери сушильного агента перед сушкой путем увеличения расхода свежего сушильного агента в линии подпитки. Способ позволяет снизить энергозатраты и повысить качество высушенного зерна. 2табл., 1 ил.

Способ относится к области химической промышленности и служит для сушки гранулированных полимерных материалов и композитов на их основе. В способе энергосберегающей сушки гранулированных полимерных материалов, включающем раздельную подачу гидрофобных и гидрофильных материалов сверху вниз в коаксиальные цилиндрические камеры и поперечный продув теплоносителя через материалы, согласно изобретению теплоноситель последовательно движется в поперечном направлении через камеры 1 и 2, осуществляя сушку материала в первой камере и нагрев материала во второй. Технический результат заключается в повышении степени отработки теплоносителя по температуре для увеличения производительности сушилки и существенного повышения энергосбережения. 3 ил.

Изобретение относится к способам комбинированной сушки семян и зерна. Осуществляют загрузку семян и зерна, гравитационное перемешивание и реверсивное продувание агентом сушки с циклами от 20 до 360 мин. В циклах поочередно используют агент сушки с повышенной t1 и пониженной t2 температурой. Температуру t2 определяют по формуле: где α - коэффициент теплоотдачи, Вт/м2·°C; f - удельная поверхность зерна, м2/кг; η - доля теплоты, пошедшая на нагрев; θ' пд - предельно допустимая температура нагрева зерна, °C; с - теплоемкость зерна, кДж/кг·°C; Δθ - допустимая величина приращения температуры зерна, °C; τ - длительность воздействия агента сушки с пониженной температурой, ч. Обеспечивается энергосбережение при повышении интенсивности процесса. 2 ил., 2 пр.

Изобретение относится к молочной промышленности. Способ получения частично высушенного сырного порошка из сыра с содержанием воды от 22 до 60 мас.%, включающий стадии приведения исходного сыра в мелкоизмельченное состояние и его нагревание в потоке в виде тонкого турбулентного динамического слоя в контакте со стенкой, нагретой по меньшей мере до 80°С, с получением сырного порошка с содержанием влаги, меньшим или равным 20%; причем указанный способ целесообразно осуществлять с использованием турбосушилки (Т), включающей полый цилиндрический корпус (1), закрытый с противоположных концов торцевыми пластинами (2, 3) и снабженный нагревательной рубашкой (4), по меньшей мере с одним впускным отверстием (5) и по меньшей мере одним выпускным отверстием (6) и с лопастным ротором (7), закрепленным с возможностью вращения внутри указанного корпуса; и, возможно, дополнительной турбосушилки (Т'), по существу, идентичной вышеуказанной турбосушилке. Изобретение позволяет максимально сохранить органолептические характеристики исходного сыра благодаря короткому времени обработки, получать продукты с высокой микробиологической чистотой. 7 з.п. ф-лы, 1 ил., 2 пр.

Изобретение относится к сушке зерна и может быть использовано в сельском хозяйстве и в системе заготовок. Способ осциллирующей сушки зерна заключается в том, что его загружают, перемещают, подвергают воздействию подогретым и неподогретым агентом сушки и разгружают. Новым является то, что длительность воздействия подогретым и неподогретым агентом сушки, а также отношение температур подогретого и неподогретого агента сушки определяют из расчетных формул, изложенных в формуле изобретения. Изобретение должно обеспечить безопасную и надежную осциллирующую сушку зерна. 1 ил.

Изобретение относится к технике конвективной сушки дисперсных материалов, например зерна, в плотном слое и может быть использовано в сельском хозяйстве и других отраслях. Способ позволяет рационально распределить потоки газа и теплоты по высоте камеры сушки 4 в зависимости от изменения переменных состояния зернового слоя, что достигается формированием зернового слоя с непрерывно-переменным значением продуваемой толщины, нелинейно возрастающим по ходу движения зерна. Сушилка содержит устройство загрузки 2 и выгрузки 3 сыпучего материала, камеру сушки 4, образованную двумя противоположными перфорированными вертикальными стенками 5 и 6, первая 5 из которых подводящей камерой 7 и воздуховодом 8 соединена с теплогенератором 9, а вторая 6 по высоте камеры сушки выполнена с нелинейным профилем вертикального поперечного сечения и установлена так, что между второй и первой стенками образован продольный канал (камера сушки) с непрерывно-переменным поперечным сечением, нелинейно возрастающим по ходу движения зерна. Для гибкой настройки камера сушки может быть построена по модульному принципу, в которой количество модулей 13 не ограничено. Изобретение позволяет увеличить интенсивность сушки, производительность оборудования и расширить область его применения. 2 н. и 3 з.п. ф-лы, 1 ил.
Наверх