Способ снижения радиолокационной заметности объекта, оборудованного, по меньшей мере, одной антенной

Изобретение относится к радиосвязи и радиолокации, в частности к антенным системам, которые вносят значительный вклад в радиолокационную заметность объектов, и может быть использовано в наземной, наводной, авиационной и космической технике. Техническим результатом является многократное снижение радиолокационной заметности объектов, оборудованных антеннами, с помощью плазменных систем с относительно небольшой потребляемой мощностью. В способе снижения радиолокационной заметности объекта, оборудованного, по меньшей мере, одной антенной, в зоне расположения антенны устанавливают герметичную радиопрозрачную полость, заполняют полость газовой смесью, в газовую смесь вводят пучок электронов, управляют составом газовой смеси, энергией электронов и силой тока пучка так, что формируют поглощающий и/или отражающий плазменный объем, профиль которого обеспечивает меньшую радиолокационную заметность плазменного объема, чем радиолокационная заметность антенны. 2 з.п. ф-лы.

 

Изобретение относится к радиосвязи и радиолокации, в частности к антенным системам, которые вносят значительный вклад в радиолокационную заметность объектов, и может быть использовано в наземной, наводной, авиационной и космической технике.

Большой вклад антенн в радиолокационную заметность объясняется тем, что антенны представляют собой металлические конструкции больших размеров, конфигурация которых определяется не требованиями снижения заметности, а необходимостью обеспечить максимальный коэффициент усиления. Описание актуальности проблемы и подробный обзор известных способов снижения радиолокационной заметности антенн приводится в [Михайлов Г.Д., Сергеев В.И., Соломин Э.А., Воронов В.А. Методы и средства уменьшения радиолокационной заметности антенных систем. Зарубежная радиоэлектроника, 1994, №4/5].

Нанесение на антенну радиопоглощающих материалов не имеет смысла, так как материал будет препятствовать работе антенны.

Известен способ снижения радиолокационной заметности антенн, основанный на прикрытии антенны механически перемещаемым экраном из радиопоглощающего или отражающего материала (в последнем случае форма экрана выбирается таким образом, чтобы радиолокационная заметность экрана была меньше заметности антенны).

Устройства, основанные на перемещении антенны или экрана, не обладают необходимым быстродействием и затрудняют работу антенны, чувствительны к перегрузкам, требуют использования поворотных устройств, надежность которых ниже, чем у электронных систем.

Известен способ снижения радиолокационной заметности антенн, основанный на размещении антенны за специальным селективным экраном, пропускающим лишь узкий диапазон длин волн, на которых работает антенна. Прочие длины волн экран отражает. За счет специального профилирования экрана его радиолокационная заметность значительно меньше, чем заметность антенны. Недостатками способа являются ограничение длин волн, на которых может работать антенна, отсутствие или недостаточный уровень снижения заметности на длинах волн, близких рабочей длине волны антенны.

Известен способ снижения радиолокационной заметности антенн, установленных под носовым обтекателем летательного аппарата, основанный на организации газового разряда по поверхности внутренней стороны конического носового обтекателя, создающего отражающее плазменное образование. При этом радиолокационная заметность газоразрядной плазмы совпадает с заметностью металлического тела, имеющего форму обтекателя. Недостатком метода является сложность реализации стабильного протяженного газового разряда.

Известны способы снижения радиолокационной заметности летательных аппаратов, основанные на создании вблизи летательного аппарата неравновесного плазменного образования, поглощающего электромагнитные волны. В патенте [US 3127608, 1964 г.] для создания плазменного образования предложено использовать пучок высокоэнергетичных частиц (электронов). Недостатком способа является его применимость лишь на летательных аппаратах с большой высотой полета (около 20 км), так как с уменьшением высоты полета быстро возрастают необходимые энергозатраты.

В патенте [US 3518670, 1970 г.] плазменное образование предлагается формировать фотоионизацией паров щелочных металлов. Способ применим только для большой высоты полета.

В патенте [РФ №2311707, 2007 г.] для снижения радиолокационной заметности турбореактивных двигателей предлагается создавать в канале двигателя плазменное образование за счет ионизации продуктов сгорания пучком быстрых электронов. Газовая среда внутри двигателя способствует длительному существованию плазмы, что позволяет снизить необходимые энергозатраты. Способ применим только к реактивным двигателям.

Технический результат, достигаемый предлагаемым изобретением, состоит в многократном снижении радиолокационной заметности объектов, оборудованных антеннами, с помощью плазменных систем с относительно небольшой потребляемой мощностью.

Технический результат достигается тем, что в способе снижения радиолокационной заметности объекта, оборудованного, по меньшей мере, одной антенной, заключающемся в том, что в зоне расположения антенны устанавливают герметичную радиопрозрачную полость, заполняют полость газовой смесью, в газовую смесь вводят пучок электронов, управляют составом газовой смеси, энергией электронов и силой тока пучка так, что формируют поглощающий плазменный объем с толщиной не менее длины волны зондирующего радиолокационного сигнала и/или отражающий плазменный объем, профиль которого обеспечивает меньшую радиолокационную заметность плазменного объема, чем радиолокационная заметность антенны. В качестве газовой смеси используют гелий и кислород, или гелий и ксенон, или гелий, кислород и ксенон. При этом герметичную радиопрозрачную полость можно установить перед антенной. Кроме того, антенна может размещаться непосредственно внутри герметичной радиопрозрачной полости. При нахождении на объекте нескольких близкорасположенных антенн для снижения их заметности используют общую герметичную радиопрозрачпую полость.

В случае снижения заметности бортовых антенн летательных аппаратов в качестве такой полости может быть использован носовой обтекатель аппарата или иной отсек, используемый для размещения антенны. При этом может потребоваться специальная доработка отсека, включающая его герметизацию, оборудование подводом электропитания и средствами заполнения рабочим газом. Для снижения радиолокационной заметности близкорасположенных антенн может использоваться единственная герметичная радиопрозрачная полость. Форму радиопрозрачной полости выбирают в зависимости от диапазона длин волн антенн и свойств плазмообразующего газа.

В зависимости от концентрации электронов и свойств используемого газа плазменное образование может пропускать радиоволны, отражать их или поглощать. Последние два случая могут использоваться для снижения радиолокационной заметности.

В случае отражения радиоволн профиль плазменного образования должен быть выбран таким, чтобы его радиолокационная заметность была во много раз меньшей, чем заметность антенны, например плазменное образование может иметь коническую форму. Для обеспечения отражения плазменное образование должно иметь концентрацию электронов выше критической и низкую частоту соударений (много ниже частоты зондирующего сигнала), что реализуемо в газах низкого давления (менее 100-1000 Па в зависимости от сорта газа).

В случае поглощения сигнала профиль плазменного образования должен обеспечивать достаточную для поглощения толщину плазмы. Для обеспечения поглощения плазменное образование должно иметь концентрацию электронов ниже критической и высокую частоту соударений (сравнимую с частотой зондирующего сигнала), что реализуемо в газах среднего и высокого давления (1-100 кПа).

При использовании для ионизации газа пучков быстрых электронов необходимую энергию электронов можно уменьшить за счет использования газов с малым зарядом ядра, например гелия.

Возможность использования антенны при использовании представленного способа зависит от скорости появления и исчезновения плазмы. Быстродействие может меняться в зависимости от решаемых антенной задач: при включении плазмы необходимо быстродействие от десятков наносекунд до миллисекунд, а при выключении - от десятков микросекунд до секунд. Быстродействие зависит как от свойств создающего плазму устройства, так и от свойств газовой среды - времени жизни свободных электронов плазменного образования. Для увеличения быстродействия необходимо уменьшать время жизни, что может быть достигнуто за счет увеличения давления газа или добавления примесей, снижающих время жизни, например молекулярного кислорода.

Для уменьшения энергозатрат, необходимых для поддержания плазменного образования, следует уменьшать давление газа, что приведет также к уменьшению частоты столкновений электронов и коэффициента поглощения волны. Увеличить частоту столкновений и коэффициент поглощения можно с помощью примесей, имеющих высокую частоту столкновений, например ксенона.

Возможность использования создаваемых пучком электронов искусственных плазменных образований для снижения радиолокационной заметности летательных аппаратов рассмотрена в [Коротеев А.С. О возможности использования неравновесной плазмы для снижения радиовидимости летательных аппаратов. Полет, №12, 2000, с.1-6]. Свойства пучковой плазмы воздуха подробно исследованы в работах [Mätzing H. Chemical kinetics of flue gas cleaning by electron beam. Karlsruhe, 1989], [Арделян Н.В., Бычков В.Л., Головин А.И., Космачевский К.В. Моделирование электронно-пучковой плазмы воздуха. XXXI Звенигородская конференция по физике плазмы и УТС]. Детальные экспериментальные исследования пучковой плазмы гелия выполнены в [Квитов С.В., Ломакин Б.Н., Соловьев В.Р. и др. Релаксация низкотемпературной гелиевой плазмы, создаваемой импульсным электронным пучком в камере большого объема. Физика плазмы, том 22, №12, с.1134-1145, 1996]. Взаимодействие электромагнитных волн с плазмой подробно рассмотрено в [Голант В.Е. Сверхвысокочастотные методы исследования плазмы. М.: Наука, 1968].

В перечисленных работах, а также в других многочисленных публикациях в области физики плазмы и распространения пучков электронов показано, что при заданном ускоряющем напряжении (начальной энергии электронов) размер создаваемого плазменного образования обратно пропорционален давлению газа, при этом размеры и форма плазменного образования зависят от рода газа.

При заданной мощности пучка электронов концентрация плазмы, а также скорость ее создания и последующего распада определяются временем жизни свободных электронов. В газах среднего и высокого давления основным механизмом гибели электронов является реакция трехчастичного прилипания к молекулам кислорода:

O2+e-+M=+M

Сечение этой реакции на порядки превышает сечения других реакций, в результате чего время жизни электронов, например, в гелии марки А (ТУ 0271-135-31323949-2005) определяется именно примесью кислорода.

При уменьшении давления газа время жизни электронов растет обратно пропорционально квадрату давления. Поэтому с уменьшением давления газа возможно уменьшение ускоряющего напряжения и мощности пучка электронов, что приведет к уменьшению массогабаритпых характеристик.

В то же время коэффициент поглощения электромагнитной волны в плазме зависит не только от длины волны и концентрации плазмы, но и от частоты соударений свободных электронов с тяжелыми частицами. Частота столкновений зависит от рода газа и прямо пропорциональна давлению. В пределе нулевой частоты соударений поглощение в плазме отсутствует, достаточно плотная бесстолкновительная плазма будет отражать падающую на нее электромагнитную волну. Как показано в [Ярыгин А.П. Эффективная поверхность рассеяния аксиально-симметричных плазменных образований в направлении их оси вращения. Радиотехника и электроника, 1969, т. XIV, №5, с.912], радиолокационная заметность такой плазмы при правильном выборе профиля концентрации может быть много меньше, чем заметность металлического тела соответствующих размеров, что позволяет использовать ее для снижения заметности.

В то же время по ряду причин предпочтительнее использовать поглощающую плазму с высокой частотой столкновений. К числу причин относится, в частности, защита от перспективных систем многопозиционной локации.

Для увеличения частоты столкновений без увеличения давления газа можно использовать примеси газов с большим сечением соударения молекул с электронами. В частности, таким газом является ксенон [Физические величины. Справочник под ред. И.С.Григорьева. М.: Энергоатомиздат, 1991].

Указанные теоретические и экспериментальные обоснования свидетельствуют о практической реализуемости данного способа.

Представленный способ применим не только на летательных аппаратах, но и для антенн любого типа базирования (наземные, морские, космические).

1. Способ снижения радиолокационной заметности объекта, оборудованного, по меньшей мере, одной антенной, заключающийся в том, что в зоне расположения антенны устанавливают герметичную радиопрозрачную полость, заполняют полость газовой смесью, в газовую смесь вводят пучок электронов, управляют составом газовой смеси, энергией электронов и силой тока пучка так, что формируют поглощающий плазменный объем и/или отражающий плазменный объем, профиль которого обеспечивает меньшую радиолокационную заметность плазменного объема, чем радиолокационная заметность антенны.

2. Способ по п.1, отличающийся тем, что герметичную радиопрозрачную полость устанавливают перед антенной.

3. Способ по п.1, отличающийся тем, что антенну размещают непосредственно внутри герметичной радиопрозрачной полости.



 

Похожие патенты:

Изобретение относится к средствам радионавигации. .

Изобретение относится к области конструкционных радиопоглощающих материалов, которые используются для обеспечения электромагнитной совместимости бортовой аппаратуры, защиты персонала от электромагнитного излучения в СВЧ диапазоне.
Изобретение относится к технологии получения радиопоглощающего магний-цинкового феррита, который может найти широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры.

Изобретение относится к радиофизике, антенной технике и может найти применение при создании поглотителей электромагнитных волн, используемых для оснащения сверхширокодиапазонных многофункциональных безэховых камер (БЭК) и экранированных помещений, обеспечивающих проведение радиотехнических измерений и испытаний технических средств на соответствие нормам и требованиям электромагнитной совместимости.

Изобретение относится к области радиотехники и звукотехники и может использоваться при строительстве и оборудовании безэховых камер (помещений с радио- и звукоизоляцией), которым предъявляются повышенные требования, и которые могут найти применение при проверке и сертификации электро-радиоприборов на электромагнитную совместимость и помехоустойчивость, звукозаписи и т.п.
Изобретение относится к антенной технике, в частности к радиопоглощающим покрытиям (РПП) и поглотителям, используемым в конструкциях антенн и антенных систем для оптимизации радиотехнических характеристик и уменьшения влияния близко расположенных металлических и диэлектрических поверхностей.

Изобретение относится к радиотехнике, а более конкретно к материалам для поглощения электромагнитных волн, и может найти применение для повышения скрытности и уменьшения вероятности обнаружения радиолокаторами объектов и оборудования наземной, авиационной, ракетной и космической техники.

Изобретение относится к многофункциональным покрытиям, обеспечивающим радиопоглощение, и может быть применено в радиотехнике. .

Изобретение относится к радиотехнике, в частности к поглотителям электромагнитных волн (ЭМВ), в том числе в диапазоне сверхвысоких частот (СВЧ), и может быть использовано для снижения радиолокационной заметности различных объектов.
Изобретение относится к материалам для защиты от ионизирующих излучений и может быть использовано в атомной, радиохимической промышленности, а также в военно-морской и авиакосмической промышленности в целях защиты обслуживающего персонала и окружающей среды

Изобретение относится к классу эластичных антирадарных материалов, состав и структура которых обеспечивают эффективное поглощение электромагнитной энергии в диапазоне радиоволн, которые могут найти применение для снижения радиолокационной контрастности летательных аппаратов, а также морских и наземных объектов

Изобретение относится к радиотехнике, а более конкретно к функциональным покрытиям, обеспечивающим поглощение в СВЧ-диапазоне частот и поглощение в акустическом диапазоне частот
Изобретение относится к технологии радиопоглощающих ферритов, которые находят все более широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры

Изобретение относится к швейной промышленности и может использоваться при изготовлении швейных изделий

Изобретение относится к радиопоглощающему материалу
Изобретение относится к технологии радиопоглощающих ферритов, которые находят все более широкое применение в производстве безэховых камер, обеспечивающих исключение отражения радиоволн от стен камеры

Изобретение относится к области защиты сухопутной и морской техники от естественного и искусственного излучения

Изобретение относится к полимерным композициям, предназначенным для поглощения воздействующих излучений. Полимерная композиция содержит в качестве основы каучук низкомолекулярный диметилсилоксановый СКТН, катализатор холодного отверждения К-68, в качестве поглощающего наполнителя железо карбонильное радиотехническое Р-10, дополнительно содержит раствор высокомолекулярного каучука СКТ в жидкости полиметилсилоксановой и тетраэтоксисилане или его производных, а также полиэтиленполиамин в качестве регулятора скорости отверждения. При получении полимерной композиции железо карбонильное заранее соединяют с каучуком низкомолекулярным СКТН в смеси с производными тетраэтоксисилана и жидкости полиметилсилоксановой (компонент А). Смесь (компонент А) выдерживают в течение не менее 24 часов. Каучук СКТ соединяют с другой частью жидкости полиметилсилоксановой и производных тетраэтоксисилана (компонент Б) и также выдерживают в течение 24 часов. Компонент А и компонент Б смешивают друг с другом непосредственно перед внесением катализатора. Количество катализатора К-68 или его смеси с ПЭПА определяет суммарную скорость отверждения и регулируемое время потери текучести композиции. Технический результат - получение полимерной композиции с поглощающими свойствами при малой толщине слоя, которая обладает достаточной прочностью и эластичностью вулканизата в широком интервале температур, сокращенным временем отверждения и возможностью регулирования скорости отверждения. 2 н.п. ф-лы, 4 табл., 5 пр.

Изобретение относится к радиотехнике, в частности к поглотителям электромагнитных волн, в том числе в диапазоне сверхвысоких частот. Технический результат - повышение коэффициента поглощения, механической прочности при сохранении низкого коэффициента отражения материала. Для этого материал для поглощения волн представляет пористый стекловидный материал, включающий более 85 мас.% стеклофазы. Пористый аморфный материал содержит кристаллическую фазу в виде кварца в количестве от 5 до 14,5 мас.% и размером менее 0,5 мкм, а в качестве газообразователя используют сажу в количестве 0,5 мас.%. Поглотитель характеризуется в диапазоне частот от 0,03 до 100 ГГц коэффициентом поглощения в пределах от 11 до 27 дБ/см, коэффициентом отражения -10 до -27 дБ, является сверхширокополосным, негорючим и экологически чистым. 1 табл.
Наверх