Система пассивной безопасности ядерной энергетической установки

Изобретение относится к ядерным энергетическим установкам, а именно к пассивным системам безопасности. Устройство содержит герметичное реакторное помещение 1, корпус ректора 2, спринклерную группу 3, коллектор пара 4, эжекторный паровой насос 5, резервуар 8 охлаждающей воды, охлаждаемую полость теплообменника 9. В теплоотводящую полость теплообменника 9 подается внешний теплоноситель 10, резервуар 8 охлаждающей жидкости напорным трубопроводом 11 соединен с вентилем 12 регулирования подачи охлаждающей воды в трубопровод 13 питания спринклерной группы и вентилем 14 регулирования подачи с трубопроводом 15 подачи охлаждающей воды в поддон 16. На внешнюю поверхность корпуса реактора 2 нанесено не менее трех слоев сферических теплопроводящих элементов 17, а на коллектор пара 4 установлен предохранительный клапан 18. При возникновении аварийной ситуации открываются вентиль 12 регулирования подачи охлаждающей воды в трубопровод 13 питания спринклерной группы и вентиль 14 регулирования подачи охлаждающей воды в поддон 16 по трубопроводу 15. Технический результат - повышение теплоотдачи от корпуса реактора за счет развития поверхности теплообмена и создания условий, препятствующих бесконтактному скатыванию охлаждающей воды. 2 ил.

 

Изобретение относится к ядерным энергетическим установкам, касается усовершенствования пассивной системы безопасности и может быть использовано при создании ядерных реакторов и АЭС на основе концепции максимально надежной защищенности ядерного реактора.

Известна система пассивной безопасности ядерной энергетической установки, использующая для охлаждения днища корпуса реактора затопление приямка корпуса водой и спринклерную систему для охлаждения верней части корпуса и компенсации испарившейся воды (Патент РФ №2055408, опубл. 27.02.96, МПК G21C 9/00).

Недостатком известной системы является образование паровой пленки на внешней поверхности корпуса реактора, отделяющей его от охлаждающей воды и снижающей перенос тепла от аварийной энергетической установки.

Наиболее близкой по технической сущности является система пассивной безопасности, содержащая реакторное помещение с реактором и приямком для сбора воды, в котором установлен теплообменник-испаритель легкокипящей жидкости, паровая фаза легкокипящей жидкости соединена с турбиной, приводящей циркуляционные насосы легкокипящей жидкости и охлаждающей воды в спринклерной системе (Патент РФ №2030801, опубл.09.09.95, МПК G21C 13/00,15/18).

Недостатком известной системы является недостаточная теплоотдача от корпуса реактора, обусловленная образованием парового слоя на гладкой поверхности корпуса реактора и падением слоя воды в приямок фактически без контакта с горячим корпусом реактора.

Техническим результатом, решаемым изобретением, является повышение теплоотдачи от корпуса реактора за счет развития поверхности теплообмена и создания условий, препятствующих бесконтактному скатыванию охлаждающей воды.

Это достигается тем, что в системе пассивной безопасности ядерной энергетической установки, содержащей герметичное реакторное помещение с размещенным в нем реактором, спринклерную группу, коллектор пара, выход которого соединен с паровым входом эжекторного парового насоса, всасывающий вход соединен трубопроводом, оснащенным регулировочным вентилем, с резервуаром охлаждающей воды, нагнетающий выход парового эжекторного насоса соединен трубопроводом с охлаждаемой полостью теплообменника, соединенной с резервуаром охлаждающей воды, в теплоотводящую полость теплообменника подается внешний теплоноситель, резервуар охлаждающей жидкости напорным трубопроводом соединен с вентилем регулирования подачи охлаждающей воды в трубопровод питания спринклерной группы, распыляющую воду на внешнюю поверхность корпуса реактора, на внешней поверхности корпуса реактора нанесены слои сферических теплопроводящих элементов, а в нижней части реактора размещен поддон, соединенный трубопроводом и регулирующим вентилем с резервуаром охлаждающей воды.

Сущность изобретения поясняется чертежами, где на фиг.1 изображена функциональная схема системы пассивной безопасности ядерной энергетической установки; на фиг.2 изображен фрагмент корпуса реактора с нанесенными на внешнюю поверхность корпуса реактора сферическими теплопроводящими элементами.

Система пассивной безопасности ядерной энергетической установки содержит герметичное реакторное помещение 1, корпус ректора 2, спринклерную группу 3, коллектор пара 4, выход которого соединен с паровым входом эжекторного парового насоса 5, всасывающий вход соединен трубопроводом 6, оснащенным регулировочным вентилем 7, с резервуаром 8 охлаждающей воды, нагнетающий выход парового эжекторного насоса 5 соединен трубопроводом с охлаждаемой полостью теплообменника 9, соединенной с резервуаром 8 охлаждающей воды, в теплоотводящую полость теплообменника 9 подается внешний теплоноситель 10, резервуар 8 охлаждающей жидкости напорным трубопроводом 11 соединен с вентилем 12 регулирования подачи охлаждающей воды в трубопровод 13 питания спринклерной группы и вентилем 14 регулирования подачи с трубопроводом 15 подачи охлаждающей воды в поддон 16, на внешнюю поверхность корпуса реактора 2 нанесено не менее трех слоев сферических теплопроводящих элементов 17, а на коллектор пара 4 установлен предохранительный клапан 18.

Система пассивной безопасности ядерной энергетической установки работает следующим образом.

При возникновении аварийной ситуации открываются вентиль 12 регулирования подачи охлаждающей воды в трубопровод 13 питания спринклерной группы и вентиль 14 регулирования подачи охлаждающей воды в поддон 16 по трубопроводу 15. Распыленная группой спринклеров вода попадает на покрытую слоями сферических теплопроводящих элементов 17 боковую поверхность корпуса реактора и по зазорам между ними, нагреваясь за счет контакта, проникает к гладкой внешней поверхности корпуса реактора 2, где и закипает. Пар по зазорам удаляется от поверхности корпуса реактора, а новые порции воды, стекая по сферическим теплопроводящим элементам, вновь проникают к поверхности корпуса реактора. По трубопроводу 15 вода из резервуара охлаждающей воды через вентиль 14 поступает в поддон 16, где, смачивая сферические теплопроводящие элементы, проникает к корпусу реактора 2. Происходят нагрев и испарение охлаждающей воды. Образовавшийся в герметичном реакторном помещении 1пар поступает в коллектор 4 пара, откуда направляется на паровой вход эжекторного парового насоса, всасывающий патрубок которого соединен с резервуаром 8 охлаждающей воды. Пар, совершая работу и смешиваясь с всасываемой водой, проходит первую стадию охлаждения. С выхода парового эжекторного насоса пароводяная смесь поступает в теплообменник 9, где охлаждается внешним теплоносителем 10, и уже в виде охлажденной воды поступает в резервуар охлаждающей воды 8, откуда по трубопроводу 11 вновь подается в спринклерную группу 3 и в поддон 16. Таким образом замыкается пароводяной цикл отвода тепла от корпуса реактора и передачи его во внешнюю среду. При этом за счет развитой поверхности слоев сферических теплопроводящих элементов существенно повышается интенсивность теплообмена, а извилистые траектории движения охлаждающей воды по зазорам между сферическими элементами не дает возможности ее скатывания в приямок без теплового обмена с внешней поверхностью корпуса реактора.

Использование изобретения обеспечивает повышение теплоотдачи от корпуса реактора за счет развития поверхности теплообмена и создание условий, препятствующих бесконтактному скатыванию охлаждающей воды.

Система пассивной безопасности ядерной энергетической установки, содержащая герметичное реакторное помещение с размещенным в нем реактором, спинклерную систему, коллектор пара, выход которого соединен с паровым входом эжекторного парового насоса, всасывающий вход соединен трубопроводом, оснащенным регулировочным вентилем с резервуаром охлаждающей воды, нагнетающий выход парового эжекторного насоса соединен трубопроводом с охлаждаемой полостью теплообменника, соединенной с резервуаром охлаждающей воды, в теплоотводящую полость теплообменника подается внешний теплоноситель, резервуар охлаждающей жидкости напорным трубопроводом соединен с вентилем регулирования подачи охлаждающей воды в трубопровод питания спринклерной системы, распыляющей воду на внешнюю поверхность корпуса реактора, отличающаяся тем, что на внешнюю поверхности корпуса реактора нанесены слои сферических теплопроводящих элементов, а в нижней части реактора размещен поддон, соединенный трубопроводом и регулирующим вентилем с резервуаром охлаждающей воды.



 

Похожие патенты:

Изобретение относится к области энергетики, а именно к повышению безопасности эксплуатации атомных электростанций. .

Изобретение относится к области атомной энергетики, а именно к локализующим системам безопасности на АЭС с двумя защитными оболочками, и может быть использовано в устройствах поддержания разрежения в межоболочечном пространстве в случае отказа вентиляционных систем, требующих электроэнергию для своей работы.

Изобретение относится к области эксплуатации атомных электростанций повышенной безопасности, а именно к системам пассивного отвода тепла (СПОТ) от ядерного реактора, и может быть использовано в этих системах в случаях, когда при работающем ядерном реакторе теплообменники СПОТ должны находиться в нагретом состоянии.

Изобретение относится к области теплоэнергетики, а именно к составам материалов для передачи тепла в условиях пиковых нагрузок. .

Изобретение относится к энергетике и предназначено для использования на атомных электростанциях с ядерными реакторами, охлаждаемыми водой под давлением. .

Изобретение относится к области атомной энергетики и может быть использовано в реакторных установках с жидкометаллическим теплоносителем. .

Изобретение относится к области ядерной энергетики и предназначено для повышения уровня безопасности реакторов большой мощности канальных. .

Изобретение относится к области энергетики, а именно к вентиляционным системам отвода тепла от первого контура энергетической установки и может быть использовано для защиты воздушных теплообменников от нагара при возможном попадании на них летающих в воздухе предметов (например, полиэтиленовая пленка, насекомые, птицы и др.).

Изобретение относится к области атомной энергетики, а именно к атомным электростанциям. .

Изобретение относится к области ядерной энергетики и предназначено для использования в барабанах-сепараторах ядерных реакторов канального типа большой мощности (РБМК).

Изобретение относится к ядерным реакторам. Ядерный реактор содержит бак (4), в котором расположена активная зона реактора, первичный контур для охлаждения реактора, колодец (6) бака, в котором находится бак (4), кольцевой канал (16), окружающий нижнюю часть бака (4) в колодце (6) бака, резервуар жидкости для заполнения колодца бака, герметичный корпус (22) реактора, камеру (26) сбора пара, генерируемого в верхнем конце колодца (6) бака, отделенную от герметичного корпуса (22), циркуляционный насос (40) и лопастный насос или паровую поршневую машину (32) для приведения в действие циркуляционного насоса (40). При этом канал (16) предназначен для выполнения функции теплозащитного экрана при нормальной работе и для обеспечения восходящей циркуляции жидкости в случае аварии, а циркуляционный насос выполнен с возможностью создания принудительной конвекции при помощи собранного пара. Технический результат - повышение уровня пассивной аварийной защиты бака реактора от проплава. 2 н. и 22 з.п. ф-лы, 6 ил.

Заявляемое изобретение относится к области атомной энергетики, в частности к системам охлаждения ядерного канального реактора, и может быть использовано для расхолаживания реактора. Система расхолаживания ядерного канального реактора включает технологические каналы реактора, барабан-сепараторы, главные циркуляционные насосы, всасывающие, напорные и раздаточно-групповые коллекторы, запорно-регулирующие клапаны, задвижки, расходомеры, коллекторы продувки тупиковых зон раздаточно-групповых коллекторов, аварийный бак, питательные насосы, линию продувочной воды, доохладители продувки, насосы расхолаживания, регенераторы, байпасную очистку, соединенные трубопроводами. Между коллекторами продувки тупиковых зон раздаточно-групповых коллекторов и технологическими каналами установлены ремонтные коллекторы, соединенные трубопроводами, а аварийный бак посредством дополнительного трубопровода подключен к линии продувочной воды. Технический результат - поддержание безопасного состояния активной зоны, возможность замены технологических каналов и ремонтных работ на всасывающей и напорной частях оборудования контура многократной принудительной циркуляции без останова процесса расхолаживания реактора, сокращение времени простоя реактора во время плановых остановов на ремонт. 1 ил.

Изобретение относится к системам безопасности ядерного реактора. Система аварийного расхолаживания ядерного реактора бассейнового типа содержит емкость аварийного расхолаживания, расположенную в бассейне реактора и сообщающуюся посредством трубопровода с подзонным пространством, которое образовано горизонтальной разделительной перегородкой, расположенной ниже активной зоны, и днищем бассейна. Емкость соединена с пространством над уровнем теплоносителя в бассейне посредством воздушника. Диаметр трубопровода, соединяющего емкость аварийного расхолаживания с подзонным пространством, выбирают таким, чтобы начальный расход теплоносителя через активную зону обеспечивал непревышение допустимых значений температуры тепловыделяющих элементов. Технический результат - предупреждение перегрева тепловыделяющих элементов. 2 з.п. ф-лы, 3 ил.

Изобретение относится к ядерным реакторам бассейнового типа. Система охлаждения активной зоны и отражателя реактора содержит активную зону и отражатель, расположенные в заполненном теплоносителем бассейне реактора. Активная зона и отражатель размещены в корпусе, выполненном в виде короба с двумя обечайками и нижней опорной решеткой с отверстиями. Активная зона расположена во внутренней обечайке корпуса, а отражатель расположен во внешней обечайке. Высоту внутренней обечайки выбирают из условия обеспечения такого расхода теплоносителя за счет естественной циркуляции, при котором обеспечивается расхолаживание активной зоны без превышения допустимых значений температур оболочек тепловыделяющих элементов. Технический результат - обеспечение расхолаживания активной зоны и отражателя в аварийных ситуациях. 1 з.п. ф-лы, 2 ил.

Изобретение относится к ядерному реактору с жидкометаллическим теплоносителем и способу отвода теплоты от такого реактора. Ядерный реактор 10 с жидкометаллическим теплоносителем содержит корпус 22 реактора, защитную оболочку 23, канал U для воздушного потока и узел 30 нагнетания. В корпусе реактора находятся активная зона 11 и хладагент L для активной зоны 11 реактора. Внешнюю поверхность корпуса окружает защитная оболочка 23. Канал U для воздушного потока обеспечивает отвод теплоты с помощью воздушного потока, проходящего вокруг защитной оболочки 23, а узел 30 нагнетания предназначен для закачки заполнителя в зазор D между корпусом 22 реактора и защитной оболочкой 23. Технический результат - повышение эффективности отвода тепла от корпуса реактора за счет повышения температуры внешней стенки защитной оболочки. 2 н. и 7 з.п. ф-лы, 17 ил.

Группа изобретений относится к ядерной технике, в частности к средствам обеспечения безопасности при хранении отработавших тепловыделяющих сборок (ОТВС) реактора ВВЭР-1000, и предназначено для охлаждения чехлов с ОТВС при запроектной аварии, вызванной осушением бассейнов выдержки. При орошении чехлов с ОТВС распыленной дренчерными оросителями водой, воду в дренчерные распылители подают периодически, причем минимальный расход воды определяют по формуле: G мин=Q/r×F1/F2, где G мин - минимальный массовый расход воды, кг/с; Qот - суммарное тепловыделение ОТВС в отсеке, кВт; R - удельная теплота парообразования воды, кДж /кг; F1 - площадь отсека, м2; F2 - суммарная площадь чехлов с ОТВС в отсеке, м2. Бак аварийного водоснабжения соединен через запорный клапан и подводящий трубопровод непосредственно с системами орошения чехлов с ОТВС и стен, и параллельно через запорный клапан с всасывающим патрубком повысительной насосной станции. Ее нагнетательный патрубок также через запорные клапаны соединен с подводящим трубопроводом и с баком аварийного водоснабжения байпасным трубопроводом. Запорные клапаны снабжены электроприводами и пультом управления, обеспечивающим их открытие и закрытие через заданные промежутки времени. Технический результат - повышение эффективности использования охлаждающей воды за счет прерывистого режима подачи воды на орошение чехлов с ОТВС, обеспечивающего преимущественно пленочный режим кипения охлаждающей воды на стенках чехлов. 2н. и 1 з.п. ф-лы, 2 ил.

Изобретения относится к ядерной технике, в частности к средствам обеспечения безопасности при хранении отработавших тепловыделяющих сборок (ОТВС) реактора ВВЭР-1000 в бассейнах выдержки, и предназначено для охлаждения чехлов с ОТВС и строительных конструкций при запроектной аварии, вызванной осушением бассейнов выдержки. Орошение чехлов с ОТВС осуществляют распыленной водой, подаваемой из резервуара аварийного водоснабжения самотеком, а в оросители дополнительно подают сжатый воздух. В системах орошения монтируют расположенные вдоль стен трубопроводы подачи воды и сжатого воздуха, располагаемыми между рядами чехлов с ОТВС. Присоединенные к ним оросители выполнены в виде акустических форсунок для тонкого распыления воды, которые размещают на расстоянии, меньшем радиуса их действия. В качестве источника сжатого воздуха используется передвижной компрессор. Технический результат - получение пленки воды на охлаждаемых поверхностях, равномерное отведение тепла от ОТВС. 2 н. и 2 з.п. ф-лы, 3 ил.

Изобретение относится к системам локализации аварии на АЭС для улавливания кориума. В расположенной ниже корпуса реактора и предназначенной для охлаждающей жидкости камере установлено средство для приема расплава, выполненное в виде вертикальных труб. Расплав в процессе заполнения камеры подают в трубы, по меньшей мере, частично заполненные карбонатами металлов, которые разлагают до оксидов при нагреве с помощью расплава. В качестве карбонатов металлов, подвергаемых разложению, выбирают карбонаты с двухвалентными катионами: Са, Mg, Fe, Mn, Ва, Sr, Pb, Zn, Cu и др. Устройство для улавливания кориума содержит расположенную ниже корпуса реактора и предназначенную для охлаждающей жидкости камеру, в которой установлены вертикальные трубы для приема расплава. Внутренние полости труб соединены с межтрубным пространством камеры, а верхние концы соединены по своим торцам. Внутренние полости труб содержат проплавляемые вытеснители объема, и, по крайней мере, часть внутренних полостей содержит карбонаты металлов. Карбонаты металлов размещены в проплавляемых вытеснителях объема или выполнены в виде пористых брикетов. Технический результат - безопасное охлаждение кориума. 2 н. и 10 з.п. ф-лы, 1 ил., 1 табл.

Изобретение относится к расхолаживанию водоохлаждаемого реактора при полном обесточивании. Пар, получаемый в парогенераторе за счет энергии остаточного тепловыделения активной зоны, через быстродействующую редукционную установку направляется в дополнительную паротурбинную установку 17, в которой вырабатывает необходимую электроэнергию для электроснабжения собственных нужд станции. При этом избыточная часть генерируемого пара направляется в смешивающий подогреватель 11, где подогревает воду, поступающую из бака холодной воды 13, полученная горячая вода поступает в бак горячей воды 10 и используется для подогрева питательной воды путем смешения, когда энергии остаточного тепловыделения становится недостаточно, для генерации необходимого количества пара. Технический результат - обеспечение расхолаживания реактора при полном обесточивании, а в штатном режиме - получение дополнительной электроэнергии за счет теплоты, аккумулированной в часы провала электрической нагрузки. 1 ил.

Изобретение относится к способам повышения маневренности и безопасности АЭС. В эксплуатационном режиме в период ночного провала электрической нагрузки, газотурбинная установка (ГТУ) 12 отключается, дополнительная паротурбинная установка 17 работает на пониженном режиме за счет незначительного снижения расхода свежего пара на основную турбоустановку 1. В пиковые часы электрической нагрузки включается в работу ГТУ 12, уходящие газы направляются в котел утилизации (КУ) 13. После питательного насоса 7 часть питательной воды направляется в КУ 13, нагревается там и подается дожимным насосом 14 в тракт питательной воды и, смешиваясь с основным потоком, подается в парогенератор. В результате уменьшения расхода через ПВД 9 уменьшаются отборы пара из основной паровой турбоустановки 1 на подогрев питательной воды. Избыток пара, полученный за счет снижения расхода на отборы, через устройство парораспределения 16 направляется на дополнительную паровую турбоустановку 17. Технический результат - выработка дополнительной энергии на АЭС в эксплуатационном режиме посредством газотурбинной и паротурбинной установок, способных обеспечить электроснабжение собственных нужд АЭС при аварии. 1 ил.
Наверх