Способ подачи воды

Изобретение относится к теплообменной технике и предназначено для использования в системе водоподготовки при подпитке питательной водой второго контура в стояночном режиме при поддержании ядерной энергетической установки (ЯЭУ). Способ подачи воды преимущественно из сепаратора в раздающую камеру котловой воды испарителя с последующей ее прокачкой через трубный пучок испарителя второго циркуляционного контура при поддержании ЯЭУ в горячем состоянии собственным теплом, заключающийся в том, что периодически, в течение суток, производят ввод в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура ЯЭУ с последующим пуском на малых оборотах насоса МПЦ воды второго контура. После ввода в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура ЯЭУ осуществляют предварительную подачу воды из напорной трубы через насос МПЦ в раздающую камеру котловой воды испарителя с привязкой к номинальному уровню воды в сепараторе, затем уравнивают температуру воды сепаратора и испарителя снижением давления в сепараторе, после пуска на малых оборотах насоса МПЦ осуществляют управление темпом роста температуры воды второго контура, увеличивая давление в сепараторе подачей пара необходимых параметров, при этом управление темпом роста температуры котловой воды второго контура МПЦ производят по линейной зависимости во времени, не превышая величину (1-3)°С в минуту. Изобретение позволяет исключить появление термоциклических напряжений в наиболее уязвимом узле теплообменного оборудования. 2 ил.

 

Изобретение относится к теплообменной технике и предназначено для использования в системе водоподготовки при подпитке питательной водой второго контура в стояночном режиме при поддержании ядерной энергетической установки (ЯЭУ) собственным теплом, работающей на жидкометаллическом теплоносителе в режиме переменных нагрузок.

Известно устройство для защиты теплообменника от коррозионно-термических повреждений, содержащее втулку, присоединенную к экранирующему элементу, причем последний выполнен в виде эквидистантно расположенных дисков, скрепленных через прокладки посредством болтов, причем один из дисков жестко присоединен к втулке, а другой снабжен обтекателем, обращенным внутрь нее /Александровский Ю.В. и др. Устройство для защиты теплообменника от коррозионно-термических повреждений. SU А.с. №1112223, F22В 37/22. Приоритет - 11.01.83. Опубл. бюллетень изобретений №33. 07.09.1984 - аналог/.

Недостатком указанного технического решения является то, что статистика опыта конструирования теплообменников и тепловые расчеты последних показывают, что независимо от давления, расхода, температуры жидкости при выходе из корпуса теплообменника термоциклические напряжения не возникают, в связи с чем установки этого устройства внутри теплообменника и для выхода жидкости не требуется. Кроме того, на патрубке теплообменника клапаны не устанавливаются, а уплотнительный материал в технике может быть: плотная бумага, резина, паронит, фторопласт, никель, терморасширенный графит и другие виды, но в научно-технической литературе неизвестны факты их использования в подобных конструкциях.

Известно защитное устройство теплообменных труб, закрепленных в трубной доске, содержащее цилиндрическую вставку, часть которой размещена в теплообменной трубе, а часть выступает над трубной доской, причем вставка установлена в трубе с образованием кольцевого зазора и снабжена на наружной поверхности кольцевыми выступами, контактирующими с трубой, расстояние между которыми превышает толщину трубной доски, а вокруг выступающей на последней части вставки в плоскости, параллельной трубной доске, установлен экран /Емельянов В.И. и др. Защитное устройство теплообменных труб. SU А.с. №817396, F28F 19/06. Приоритет - 27.04.79. Опубл. бюллетень изобретений №12, 30.03.1981 - прототип/.

Недостатком этого технического решения является крайне узкая, из-за габаритных размеров, область применения, так как укрепление пучка теплообменных труб в трубной доске осуществляется с очень малыми межосевыми расстояниями - перешейками, соизмеримыми с толщиной стенок самих труб. Кроме того, элементы устройства создают большую величину ничем неоправданных гидравлических сопротивлений, а место их максимальной концентрации всегда связано с соответствующей величиной концентрации термоциклических напряжений.

Технический результат предлагаемого изобретения - исключение термоциклических напряжений в сварных швах испарителя, соединяющих трубы с трубной доской последнего, увеличение ресурса эксплуатационной надежности ЯЭУ в целом.

Указанный технический результат достигается тем, что способ подачи воды преимущественно из сепаратора в раздающую камеру котловой воды испарителя с последующей ее прокачкой через трубный пучок испарителя второго циркуляционного контура при поддержании ЯЭУ в горячем состоянии собственным теплом, заключающийся в том, что периодически, в течение суток, производят ввод в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура ЯЭУ с последующим пуском на малых оборотах насоса МПЦ воды второго контура, причем после ввода в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура ЯЭУ осуществляют предварительную подачу воды из напорной трубы через насос МПЦ в раздающую камеру котловой воды испарителя с привязкой к номинальному уровню воды в сепараторе, затем уравнивают температуру воды сепаратора и испарителя снижением давления в сепараторе, после пуска на малых оборотах насоса МПЦ осуществляют управление темпом роста температуры воды второго контура, увеличивая давление в сепараторе подачей пара необходимых параметров, при этом управление темпом роста температуры котловой воды второго контура МПЦ производят по линейной зависимости во времени, не превышая величину (1-3)°С в минуту.

Изложенная сущность изобретения поясняется чертежами, где:

на фиг.1 - представлена пневмогидравлическая схема ЯЭУ;

на фиг.2. - продольный разрез камеры котловой воды испарителя.

Способ подачи воды осуществляется на ЯЭУ, работающей на жидкометаллическом теплоносителе в режиме переменных нагрузок, включающей реактор 0 с активной зоной 1, проведение ядерной реакции деления в которой осуществляется с помощью приводов регулирующих стержней 2. Далее, по тракту жидкометаллического теплоносителя следует пароперегреватель 3, испаритель 4, центробежный насос 5, и вновь происходит возврат в объем реактора 0. Движение котловой воды второго контура осуществляется из сепаратора 6, предназначенного в качестве емкости для хранения соответствующего объема котловой воды и выполнения функции осушки пара. После подпитки сепаратора 6 водой и смешения ее с объемом воды сепаратора 6 образуется котловая вода сепаратора 6, которая за счет насоса многократно принудительной циркуляции (МПЦ) 7 поступает в раздающую камеру 8 котловой воды испарителя 4, далее, минуя трубчатку испарителя 4, поступает вновь в сепаратор 6, который за счет сепарационных устройств осуществляет осушку пароводяной смеси и направляет осушенный пар в пароперегреватель 3 с последующей подачей на турбину 9, откуда через конденсатор 10 вновь поступает в сепаратор 6, подпитываемый периодически из-за протечек в конденсаторе 10 подпиточной водой.

Способ подачи воды осуществляют следующим образом.

При поддержании ЯЭУ в горячем состоянии собственным теплом возникает необходимость подогрева жидкометаллического теплоносителя для исключения замерзания последнего в чехлах системы управления и защиты активной зоны 2 в районе верхнего уровня, так как в этом случае ЯЭУ будет неуправляемой. Для этого производят ввод в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура ЯЭУ, но для отбора излишне поступающего тепла и исключения повреждения соответствующего оборудования осуществляют подключение второго контура МПЦ. В результате осуществления циркуляции всего объема жидкометаллического теплоносителя первого контура происходит уравнивание его температуры. Но при поступлении достаточно большого объема котловой воды с невысокой температурой из напорного трубопровода сепаратора 6 в раздающую камеру испарителя 8 в сварных швах труб с трубной доской испарителя 8 могут иметь место большие величины термоциклических напряжений, приводящих к возникновению трещин в перешейках трубной доски и, как следствие, к межконтурному разуплотнению. Для исключения этого повреждения котловую воду из напорного трубопровода сепаратора 6 небольшими объемами пропускают через насос МПЦ 7 до тех пор, пока уровень котловой воды в сепараторе 6 достигнет номинальной отметки, далее снижают давление в сепараторе 6, чтобы температуры котловой воды в сепараторе 6 и в испарителе 4 сравнялись. После этого производят пуск на малых оборотах насоса МПЦ 7 и осуществляют управление темпом роста температуры котловой воды сепаратора 6, увеличивая давление в сепараторе 6 подачей пара необходимых параметров, при этом управление темпом роста температуры котловой воды второго контура МПЦ производят по линейной зависимости во времени, не превышая величину (1-3)°С в минуту, подтвержденное расчетами и экспериментальной проверкой на полномасштабной ЯЭУ.

Применение способа подачи воды с предлагаемой последовательностью технологических операций исключает появление термоциклических напряжений в наиболее уязвимом узле теплообменного оборудования - трубная доска испарителя - и, как следствие, приведет к увеличению ресурса эксплуатационной надежности работы ЯЭУ в целом.

Способ подачи воды преимущественно из сепаратора в раздающую камеру котловой воды испарителя с последующей ее прокачкой через трубный пучок испарителя второго циркуляционного контура при поддержании ЯЭУ в горячем состоянии собственным теплом, заключающийся в том, что периодически, в течение суток, производят ввод в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура ЯЭУ с последующим пуском на малых оборотах насоса МПЦ воды второго контура, отличающийся тем, что после ввода в работу на малой мощности ядерного реактора с прокачкой жидкометаллического теплоносителя первого контура ЯЭУ осуществляют предварительную подачу воды из напорной трубы через насос МПЦ в раздающую камеру котловой воды испарителя с привязкой к номинальному уровню воды в сепараторе, затем уравнивают температуру воды сепаратора и испарителя снижением давления в сепараторе, после пуска на малых оборотах насоса МПЦ осуществляют управление темпом роста температуры воды второго контура, увеличивая давление в сепараторе подачей пара необходимых параметров, при этом управление темпом роста температуры котловой воды второго контура МПЦ производят по линейной зависимости во времени, не превышая величину 1-3°С в минуту.



 

Похожие патенты:

Изобретение относится к ядерной, термоядерной и космической технике и может быть использовано в ядерно-энергетических установках (ЯЭУ) с жидкометаллическим теплоносителем, преимущественно космического назначения.

Изобретение относится к ядерным энергетическим установкам водо-водяного типа, а более конкретно к системам удаления паро-газовой смеси из первого контура для предотвращения образования опасной концентрации кислорода и водорода в отдельных местах первого контура и для предовращения срыва естественной циркуляции в нем.

Изобретение относится к атомной технике и может быть использовано в ядерных энергетических установках с водоводяными реакторами с паровой системой компенсации давления.

Изобретение относится к вспомогательным элементам ядерных энергоустановок (ЯЭУ) космических аппаратов (КА). .

Изобретение относится к области атомной энергетики и может быть использовано в ядерных реакторах с тепловыделяющими сборками на основе микротвэлов. .

Изобретение относится к ядерно-космической и термоядерной технике и жидкометаллическим системам охлаждения и может быть использовано в высокотемпературных ЯЭУ с жидкометаллическим теплоносителем преимущественно космического назначения.

Изобретение относится к вспомогательным элементам и системам космических ядерных энергоустановок (ЯЭУ). .

Изобретение относится к ядерной, термоядерной и космической технике и может быть использовано в высокотемпературных ядерно-энергетических установках с жидкометаллическим теплоносителем.

Изобретение относится к области теплотехники тяжелых жидкометаллических теплоносителей и может быть использовано в исследовательских, испытательных стендах и установках атомной техники с реакторами на быстрых нейтронах. В охладителе перед патрубком подвода охлаждающей воды установлен регулятор ее расхода, а перед ним - задатчик температуры, вход которого соединен с выходом термопреобразователя, установленного на патрубке отвода жидкометаллического теплоносителя. Технический результат - повышение эффективности теплообмена за счет автоматизации процесса. 1 з.п. ф-лы, 1 ил.

Изобретение относится к контролю ЯЭУ с водяным теплоносителем. Система содержит комплекс измерения активности анализируемой среды, включающий датчик радиоактивного излучения (6) и устройство отбора и транспортировки анализируемой среды к датчикам радиоактивного излучения (6), и информационно-вычислительное устройство (10). На каждом контролируемом участке трубопровода (1) дополнительно установлены, по крайней мере, два комплекса измерения активности среды, включающие датчики радиоактивного излучения (6), которые избирательно-чувствительны к излучению азота-16. Датчики радиоактивного излучения (6) расположены по всей длине трубопровода (1) на известных расстояниях. Устройства отбора и транспортировки анализируемой среды выполнены в виде патрубков (5), проходящих через в теплоизоляцию (2) трубопровода (1). Одни торцы патрубков (5) выведены в подизоляционное пространство (4) трубопровода (1), а другие торцы патрубков (5) выведены к датчикам радиоактивного излучения (6). Определение местоположения и массового расхода течи проводят по совокупным показаниям задействованных комплексов измерения активности азота-16. Технический результат - повышение точности определения местоположения и массового расхода течи. 1 ил.

Изобретение относится к ядерным реакторным установкам с жидкометаллическим теплоносителем. Раскрыт способ предотвращения коррозии металлоконструкций реактора путем управления вводом газа в теплоноситель ядерной реакторной установки. Способ имеет следующие шаги: в объем над теплоносителем из газовой системы подают газ, предназначенный для ввода в теплоноситель; газ вводят в теплоноситель; из объема над теплоносителем выводят газ в газовую систему. Технический результат: предотвращение повторного использования загрязненного газа. 3 н. и 7 з.п. ф-лы, 4 ил.

Изобретение относится к способам отвода остаточного тепловыделения реактора в условиях полного обесточивания АЭС. Дополнительная ПТУ 2 продолжает генерировать электроэнергию на собственные нужды станции, используя пар, получаемый в парогенераторе за счет энергии остаточного тепловыделения реактора. Избыток генерируемого в ПГ пара направляется в ПСА 8, где нагревает холодную воду из БХВ 6. Полученная горячая вода запасается в БГВ 9. Запасенная в БГВ 9 горячая вода направляется в ПГ. Отработавший в дополнительной ПТУ 2 пар направляется в конденсатор 4, откуда конденсат сливается в БХВ 6. В эксплуатационном режиме в период ночного провала электрической нагрузки, часть пара из ПГ направляется в ПСА 8, где подогревает холодную воду, подаваемую из БХВ 6. Полученная горячая вода запасается в БГВ 9. Дренаж греющего пара после ПСА 8 подается в тракт питательной воды после ПВД 12. Технический результат - работа на генерацию электроэнергии в сеть в штатном режиме установок повышения безопасности, отсутствие их простоя. 1 ил.

Изобретение относится к атомной технике. Ядерная энергетическая установка (ЯЭУ) содержит интегральный реактор с корпусом и крышкой, не менее трех контуров циркуляции теплоносителя, промежуточный (9) и технологический (14) теплообменник, трубопроводы подвода и отвода теплоносителя от промежуточного и технологического теплообменников, запорную арматуру и систему очистки (11) щелочного жидкого металла (4). Система очистки теплоносителя (11) состоит из по меньшей мере одной мембраны (4) и приемника водорода и трития с возможностью вакуумирования его полости (8) и отвода из него поступивших водорода и трития. При выборе конструкции мембраны (3) учитывают, во-первых, взаимосвязь конструкционных характеристик мембраны с конструкционными характеристиками ЯЭУ, массообменными характеристиками мембраны и ЯЭУ, предельно допустимой массовой концентрации трития в продукте, отводимом из третьего контура (6); во-вторых, взаимосвязи массообменных характеристик ЯЭУ и предельно допустимой массовой концентрации трития в продукте, отводимом из третьего контура (6). Технический результат - обеспечение требованиям радиационной безопасности по тритию продукта, отводимого из третьего контура (6) ЯЭУ. 2 ил.
Наверх