Способ производства штрипсов из низколегированной стали
Владельцы патента RU 2358023:
Открытое акционерное общество "Северсталь" (ОАО "Северсталь") (RU)
Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении на непрерывных широкополосных станах штрипсов для спиральношовных электросварных труб для магистральных нефтепроводов. Для повышения ударной вязкости при отрицательных температурах и трещиностойкости штрипсов осуществляют нагрев слябов из стали, имеющей следующее соотношение компонентов, мас.%: 0,11-0,14 С; 1,30-1,65 Mn; 0,4-0,6 Si; 0,02-0,05 Al; 0,01-0,04 Nb; 0,01-0,03 Ti; 0,001-0,005 Ca; не более 0,01 V; не более 0,2 Cr; не более 0,2 Ni; не более 0,2 Cu; не более 0,015 Р; не более 0,006 S; не более 0,010 N, остальное Fe, его черновую прокатку до промежуточной толщины, непрерывную чистовую прокатку с температурой начала прокатки не выше 970°С и температурой конца прокатки, равной 800-855°С, и охлаждение водой до температуры 540-580°С. Кроме того, суммарное содержание в стали С, Mn, Cr, Cu, Si, Ni и V удовлетворяет соотношению: С+(Mn+Cr+Cu)/20+Si/30+Ni/60+V/10≤0,24%, а чистовую прокатку штрипсов ведут с суммарным относительным обжатием по толщине не менее 64%. 1 з.п. ф-лы, 3 табл.
Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении на непрерывных широкополосных станах штрипсов для спиральношовных электросварных труб для магистральных нефтепроводов.
Для производства спиральношовных электросварных труб магистральных нефтепроводов, работающих в сейсмических зонах при отрицательных температурах, необходимы горячекатаные штрипсы (полосы) толщиной 12-16 мм, шириной 900-1800 мм из низколегированной стали, обладающие следующим комплексом механических и эксплуатационных свойств (табл.1):
Таблица 1. | ||||||
Свойства штрипсов для нефтепроводных спиральношовных труб | ||||||
σв, Н/мм2 | σт, Н/мм2 | δ5, % | σт/σв | KCV-10, Дж/см2 | KV-20, Дж/см2 | KCU-40 Дж/см2 |
510-620 | 380-490 | не менее 23 | не более 0,90 | не менее 98 | не менее 27 | не менее 68 |
Примечание: Штрипсы должны выдерживать холодный изгиб на 180°. |
Известен способ производства стальных листов, включающий выплавку и непрерывную разливку в слябы низколегированной стали, содержащей, мас.%:
Углерод | 0,04-0,10 |
Кремний | 0,01-0,50 |
Марганец | 0,4-1,5 |
Хром | 0,05-1,0 |
Молибден | 0,05-1,0 |
Ванадий | 0,01-0,1 |
Бор | 0,0005-0,005 |
Алюминий | 0,001-0,1 |
Железо и примеси | остальное. |
Отлитые слябы нагревают до температуры 1250°С и прокатывают с суммарным обжатием не менее 75%. Прокатанные листы подвергают закалке из аустенитной области и высокотемпературному отпуску [1].
Недостатки известного способа состоят в том, что штрипсы из этой стали имеют низкую ударную вязкость и трещиностойкость при отрицательных температурах, неудовлетворительную свариваемость. Это делает невозможным применение штрипсов для изготовления спиральношовных труб северного исполнения, работающих в сейсмически опасных районах. Кроме того, необходимость проведения термического улучшения (закалки и отпуска) штрипсов после прокатки усложняет и удорожает производство.
Известен также способ производства листовой низколегированной стали, включающий отливку слябов следующего химического состава, мас.%:
Углерод | 0,02-0,3 |
Марганец | 0,5-2,5 |
Алюминий | 0,005-0,1 |
Кремний | 0,05-1,0 |
Ниобий | 0,003-0,01 |
Железо | остальное. |
Слябы нагревают до температуры 950-1050°С и прокатывают при температуре выше точки Аr3 с суммарным обжатием 50-70%. Прокатанные листы охлаждают на воздухе [2].
При таком способе производства листы имеют недостаточную прочность и пластичность при отношении σт/σв, превышающем 0,92. Такие листы не удовлетворяют требованиям по ударной вязкости при отрицательных температурах, имеют недостаточную свариваемость и непригодны для изготовления спиральношовных труб северного исполнения для эксплуатации в сейсмически опасных районах.
Наиболее близким по своей технической сущности и достигаемым результатам к предлагаемому изобретению является способ производства штрипсов из низколегированной стали следующего химического состава, мас.%:
Углерод | 0,12-0,17 |
Марганец | 1,3-1,6 |
Кремний | 0,3-0,6 |
Алюминий | 0,02-0,06 |
Ванадий и/или ниобий | 0,01-0,05 |
Хром | не более 0,3 |
Никель | не более 0,3 |
Медь | не более 0,3 |
Фосфор | не более 0,015 |
Сера | не более 0,006 |
Азот | не более 0,010 |
Кальций | не более 0,02 |
Железо | Остальное. |
Слябы из низколегированной стали нагревают до температуры 1220-1280°С, подвергают черновой прокатке до промежуточной толщины, чистовой непрерывной прокатке с регламентированной температурой конца прокатки 820-880°С, охлаждению водой до температуры смотки 580-660°С [3].
Недостатки известного способа состоят в том, что штрипсы имеют низкие ударную вязкость при отрицательных температурах и трещиностойкость.
Техническая задача, решаемая изобретением, состоит в повышении ударной вязкости при отрицательных температурах и трещиностойкости штрипсов.
Для решения поставленной технической задачи в известном способе производства штрипсов из низколегированной стали, включающем нагрев слябов, черновую прокатку до промежуточной толщины, непрерывную чистовую прокатку с регламентированной температурой конца прокатки, охлаждение водой, согласно предложению, сталь имеет следующее соотношение компонентов, мас.%:
Углерод | 0,11-0,14 |
Марганец | 1,3-1,65 |
Кремний | 0,40-0,60 |
Алюминий | 0,02-0,05 |
Ниобий | 0,01-0,04 |
Титан | 0,01-0,03 |
Кальций | 0,001-0,005 |
Ванадий | не более 0,01 |
Хром | не более 0,2 |
Никель | не более 0,2 |
Медь | не более 0,2 |
Фосфор | не более 0,015 |
Сера | не более 0,006 |
Азот | не более 0,010 |
Железо | Остальное, |
температуру начала чистовой прокатки поддерживают не выше 970°С, конца прокатки равной 800-855°С, а охлаждение водой ведут до температуры 540-580°С. Кроме того, суммарное содержание в стали углерода С, марганца Mn, хрома Cr, меди Cu, кремния Si, никеля Ni, ванадия V должно удовлетворять соотношению: C+(Mn+Cr+Cu)/20+Si/30+Ni/60+V/10≤0,24%, а чистовую прокатку штрипсов ведут с суммарным относительным обжатием по толщине не менее 64%.
Сущность изобретения состоит в следующем. Использование низколегированной стали предложенного состава при выполнении условия C+(Mn+Cr+Cu)/20+Si/30+Ni/60+V/10≤0,24% обеспечивает после горячей прокатки по предложенным режимам получение заданного комплекса механических свойств штрипсов, повышение вязкостных свойств и трещиностойкости при отрицательных температурах, высокую свариваемость обсадных труб. Повышение комплекса механических и эксплуатационных свойств штрипсов достигается как за счет оптимизации химического состава стали, так и режимов горячей прокатки.
Углерод в низколегированной стали предложенного состава определяет прочностные свойства штрипсов. Снижение содержания углерода менее 0,11% приводит к падению их прочности ниже допустимого уровня. Увеличение содержания углерода более 0,14% ухудшает вязкостные свойства штрипсов и трещиностойкость при отрицательных температурах.
Снижение содержания марганца менее 1,30% увеличивает окисленность стали, ухудшает прочность и вязкостные свойства штрипсов. Повышение содержания марганца более 1,65% увеличивает отношение предела текучести к временному сопротивлению разрыву σт/σв, сверх 0,9, что недопустимо.
При содержании кремния менее 0,40% ухудшается раскисленность стали, снижаются прочностные свойства штрипсов. Увеличение содержания кремния более 0,60% приводит к возрастанию количества силикатных включений, снижает ударную вязкость штрипсов, ухудшает показатели KV-20 KCU-40.
Алюминий раскисляет и модифицирует сталь. Связывая избыточный азот в нитриды, подавляет его негативное воздействие на свойства штрипсов. При содержании алюминия менее 0,02% снижается комплекс механических свойств штрипсов. Увеличение его концентрации более 0,05% приводит к ухудшению вязкостных свойств штрипсов при отрицательных температурах.
Ниобий измельчает зерно микроструктуры, повышает прочность и вязкость штрипсов, прокатанных по предложенным режимам. При содержании ниобия менее 0,01% штрипсы имеют недостаточную вязкость при отрицательных температурах. Увеличение содержания ниобия сверх 0,04% оказалось нецелесообразным, так как не улучшало механических и эксплуатационных свойств штрипсов.
Титан, являясь сильным карбидообразующим элементом, способствует повышению прочностных свойств штрипсов при одновременном повышении ударной вязкости и трещиностойкости при отрицательных температурах. Снижение содержания титана менее 0,01% приводит к снижению прочностных и вязкостных свойств штрипсов, ухудшению трещиностойкости. Увеличение содержания титана боле 0,03% приводит к росту отношения σт/σв, что нецелесообразно.
Кальций способствует модификации стали и измельчению зерен микроструктуры при горячей прокатке слябов. При снижении содержания кальция менее 0,001% он не оказывает модифицирующего влияния, что приводит к ухудшению комплекса механических свойств штрипсов. При увеличении содержания кальция более 0,005% возрастает количество неметаллических включений, снижаются вязкостные и пластические свойства штрипсов.
Хром, никель и медь являются примесными элементами. При концентрации каждого из них не более 0,2% они не оказывают вредного влияния на ударную вязкость и трещиностойкость при отрицательных температурах. При концентрации каждого из этих элементов более 0,2% ухудшаются ударная вязкость, трещиностойкость и свариваемость штрипсов.
Сталь предложенного состава может содержать в виде примесей не более 0,015% фосфора, не более 0,006% серы и не более 0,010% азота. При указанных предельных концентрациях эти элементы не оказывают заметного негативного воздействия на качество штрипсов, тогда как их удаление из расплава стали существенно повышает затраты на производство и усложняет технологический процесс. Увеличение концентрации этих вредных примесей более предложенных значений ухудшает весь комплекс механических свойств штрипсов.
Экспериментально установлено, что для обеспечения высокой трещиностойкости штрипсов в горячекатаном состоянии необходимо, чтобы C+(Mn+Cr+Cu)/20+Si/30+Ni/60+V/10≤0,24%. В этом случае штрипсы, прокатанные по предлагаемым режимам, имеют максимальную трещиностойкость. Если C+(Mn+Cr+Cu)/20+Si/30+Ni/60+V/10>0,24%, то это ведет к снижению трещиностойкости, а также свариваемости стали.
Нагрев под прокатку слябов из низколегированной стали предложенного состава обеспечивает ее аустенитизацию, растворение в аустенитной матрице сульфидов, фосфидов, нитридов, легирующих и примесных соединений, карбонитридных упрочняющих частиц.
Непрерывная чистовая прокатка штрипсов из стали преложенного химического состава в температурном интервале от температуры начала прокатки Тнп≤970°С до температуры конца прокатки Ткп=800-855°С с суммарным относительным обжатием εΣ≥64% (режим контролируемой прокатки) обеспечивает за счет реализации деформационно-термического циклирования диспергирование аустенитных зерен микроструктуры и снижение скорости их роста в процессе рекристаллизации. Также при деформационно-термическом циклировании происходит полное выпадение из твердого раствора карбонитридных упрочняющих частиц, деформационное упрочнение металлической матрицы. Последующее охлаждение водой штрипса с диспергированной микроструктурой до температуры смотки Тсм=540-580°С обеспечивает фиксацию мелкозернистой структуры перлита с зернистой морфологией. В результате штрипсы в горячекатаном состоянии приобретают повышенные ударную вязкость и трещиностойкость при отрицательных температурах при высоких прочностных и пластических свойствах.
Если Тнп будет выше 970°С, то возрастает разнозернистость микроструктуры прокатанных штрипсов, что ведет к снижению прочностных и вязкостных свойств.
При Ткп выше 855°С ускоряются процессы динамической и статической рекристаллизации деформированной микроструктуры, не достигается требуемая степень упрочнения штрипса и измельчение его микроструктуры до оптимального уровня, что ведет к росту размеров зерен аустенита, снижению вязкостных и прочностных свойств штрипсов, ухудшению трещиностойкости. Снижение Ткп менее 800°С приводит к формированию разнобалльности микроструктуры, снижению ударной вязкости и трещиностойкости при отрицательных температурах.
При охлаждении штрипсов водой до Тсм выше 580°С имеет место разупрочнение штрипсов, снижение вязкостных свойств при отрицательных температурах. Снижение Тсм менее 540°С не приводит к улучшению свойств штрипсов, а лишь увеличивает расход охлаждающей воды и энергозатраты.
Экспериментально установлено, что при чистовой прокатке с суммарным обжатием менее 64% не обеспечивается необходимая степень измельчения аустенитных зерен микроструктуры низколегированной стали. В результате снижаются вязкостные свойства штрипсов и трещиностойкость при отрицательных температурах.
Примеры реализации способа
В кислородном конвертере производят выплавку низколегированных сталей различного состава (табл.2), которые подвергают непрерывной разливке в слябы толщиной 250 мм.
Слябы загружают в методические печи и нагревают до температуры аустенитизации Та=1250°С. Разогретый сляб из стали с составом №3 выдают на печной рольганг непрерывного широкополосного стана 2000 и подвергают прокатке в черновой группе клетей (черновая прокатка) в раскат с промежуточной толщиной Н0=50 мм. Затем раскат при температуре 950°С задают в непрерывную 7-клетевую чистовую группу клетей, где обжимают в штрипс конечной толщины H1=14 мм. Таким образом, суммарное относительное обжатие при чистовой прокатке составляет:
Температуру конца прокатки поддерживают равной Ткп=825°С изменением скорости прокатки и межклетевым охлаждением штрипса.
Прокатанный штрипс во время транспортирования по отводящему рольгангу подвергают охлаждению ламинарными струями воды до температуры Тсм=560°С, после чего сматывают в рулон.
Варианты прокатки штрипсов по различным режимам из сталей различного состава приведены в табл.3.
Из табл.3 следует, что при реализации предложенного способа (варианты №2-5) достигается повышение вязкостных свойств и трещиностойкости штрипсов при отрицательных температурах. В случае запредельных значений заявленных параметров (варианты №1 и №6) вязкостные свойства и трещиностойкость штрипсов ухудшаются. Также более низкие вязкостные свойства и трещиностойкость имеют штрипсы, произведенные согласно способу-прототипу (вариант №7).
Технико-экономические преимущества предложенного способа заключаются в том, что нагрев слябов из низколегированной стали предложенного состава с соотношением содержаний химических элементов стали C+(Mn+Cr+Cu)/20+Si/30+Ni/60+V/10≤0,24%, последующая их черновая горячая прокатка до промежуточной толщины, непрерывная чистовая прокатка от температуры не выше 970° до температуры 800-855°С с суммарным относительным обжатием по толщине не менее 64%, охлаждение водой до температуры 540-580°С обеспечивают реализацию деформационно-термического циклирования и формирование оптимальной мелкозернистой перлитной микроструктуры стали. За счет этого достигается повышение ударной вязкости и трещиностойкости при отрицательных температурах.
Использование предложенного способа обеспечит повышение рентабельности производства штрипсов для сварных спиральношовных труб для магистральных нефтепроводов северного исполнения на 10-15%
Источники информации
1. Заявка Японии №61-163210, МПК C21D 8/00, 1986 г.
2. Заявка Японии №61-223125, МПК C21D 8/02, С22С 38/54, 1986 г.
3. Патент России №2262537, МПК C21D 8/02, С22С 38/46, 2005 г. - прототип.
Таблица 2 | ||||||||||||||||
Химический состав низколегированных сталей | ||||||||||||||||
№ состава | Содержание химических элементов, масс.% | |||||||||||||||
С | Mn | Si | Al | Nb | Ti | Ca | V | Cr | Ni | Cu | Р | S | N |
![]() |
Fe | |
1. 2. 3. 4. 5. 6. 7. |
0,100 0,110 0,120 0,113 0,140 0,150 0,160 |
1,20 1,30 1,48 1,65 1,30 1,70 1,60 |
0,3 0,4 0,5 0,6 0,4 0,7 0,6 |
0,01 0,02 0,03 0,05 0,03 0,06 0,04 |
0,009 0,010 0,025 0,040 0,030 0,050 0,040 |
0,009 0,010 0,020 0,030 0,020 0,040 - |
0,0009 0,0010 0,0030 0,0050 0,0020 0,0060 0,012 |
0,004 0,005 0,007 0,010 0,008 0,011 0,010 |
0,12 0,14 0,17 0,20 0,10 0,23 0,25 |
0,11 0,12 0,14 0,20 0,15 0,25 0,27 |
0,10 0,13 0,15 0,20 0,10 0,30 0,30 |
0,011 0,012 0,013 0,015 0,014 0,016 0,014 |
0,001 0,002 0,004 0,006 0,005 0,007 0,005 |
0,005 0,006 0,008 0,010 0,007 0,011 0,009 |
0,183 0,204 0,230 0,240 0,232 0,290 0,293 |
Остальн. -:- -:- -:- -:- -:- -:- |
Таблица 3 | |||||||||||||
Режимы производства штрипсов из низколегированной стали и их эффективность | |||||||||||||
№ варианта | № состава | Режимы прокатки | Механические свойства | Трещиностойкость | |||||||||
Тнп °с | εΣ, °С | Ткп °с | Тем,°с | σв, Н/мм2 | σт Н/мм2 | δ5,% | σв/σт | KCV-10, Дж/см2 | KV-20 Дж/см2 | KCU-40 Дж/см2 | |||
1. 2. 3. 4. 5. 6. 7. |
6. 2. 3. 4. 5. 1. 7. |
930 940 950 960 970 980 970 |
62 64 72 75 80 68 80 |
790 800 825 840 855 860 880 |
530 540 560 570 580 590 660 |
650 520 550 600 620 500 510 |
500 405 413 462 465 455 400 |
19 32 33 33 32 26 25 |
0,77 0,78 0,75 0,77 0,75 0,91 0,78 |
96 108 110 103 109 92 78 |
24 32 35 30 30 25 22 |
47 72 78 71 75 49 51 |
неудовл. удовл. удовл. удовл. удовл. неудовл. неудовл. |
1. Способ производства штрипсов из низколегированной стали, включающий нагрев слябов, черновую прокатку до промежуточной толщины, непрерывную чистовую прокатку с регламентированной температурой конца прокатки, охлаждение водой, отличающийся тем, что сталь имеет следующее соотношение компонентов, мас.%:
углерод | 0,11-0,14 |
марганец | 1,3-1,65 |
кремний | 0,40-0,60 |
алюминий | 0,02-0,05 |
ниобий | 0,01-0,04 |
титан | 0,01-0,03 |
кальций | 0,001-0,005 |
ванадий | не более 0,01 |
хром | не более 0,2 |
никель | не более 0,2 |
медь | не более 0,2 |
фосфор | не более 0,015 |
сера | не более 0,006 |
азот | не более 0,010 |
железо | остальное, |
температуру начала чистовой прокатки поддерживают не выше 970°С, конца прокатки равной 800-855°С, а охлаждение водой ведут до температуры 540-580°С.
2. Способ по п.1, отличающийся тем, что суммарное содержание в стали углерода, марганца, хрома, меди, кремния, никеля, ванадия должно удовлетворять соотношению: [C+(Mn+Cr+Cu)/20+Si/30+Ni/60+V/10]≤0,24%, а чистовую прокатку штрипсов ведут с суммарным относительным обжатием по толщине не менее 64%.