Теплообменник и способ его изготовления

Изобретение относится к теплотехнике, а именно к теплообменникам, в частности к испарителю для холодильного аппарата, например домашнего холодильника или морозильника, а также к способу его изготовления. Теплообменник изготавливают из опорной пластины, фасонной детали, выполненной из теплоизоляционного материала и имеющей поверхность с расположенной на этой поверхности канавкой и сформованной в соответствии с ходом канавки трубки для теплоносителя. Для этого трубку помещают в канавку фасонной детали, и опорную пластину скрепляют с поверхностью фасонной детали, на которой расположена трубка. Техническим результатом изобретения является создание способа изготовления теплообменника, который позволит изготовлять высококачественные теплообменники даже при невысоких требованиях к допускам на изготовление и изготовление теплообменников по этому способу. 2 н. и 16 з.п. ф-лы, 2 ил.

 

Область техники

Предлагаемое изобретение относится к теплообменнику, в частности к испарителю для холодильного аппарата, например домашнего холодильника или морозильника, а также к способу его изготовления.

Уровень техники

Из патентного документа DE 18826 А1 известен теплообменник, состоящий из опорной пластины, трубки для хладагента, расположенной в форме меандра на опорной пластине, и битумного теплоизоляционного слоя. Битумный слой сначала наносится в форме пластины на конструкцию из опорной пластины и трубки для хладагента, а затем формуется с помощью штампа, в котором образована канавка в форме меандра в соответствии с ходом трубки для хладагента на опорной пластине.

При изготовлении испарителя нужно тщательно следить за тем, чтобы трубка для хладагента на опорной пластине располагалась в точном соответствии с ходом канавки штампа. Если трубка ляжет не посредине канавки, то толщина слоя битума на противоположных сторонах трубки будет неодинаковой, или слой битума при наложении на опорную пластину и трубку для хладагента порвется в отдельных местах. Если отклонение от надлежащего положения будет так велико, что трубка окажется вне канавки, то она при прижатии штампа сплющится, и испаритель будет испорчен.

Ход штампа должен быть, по меньшей мере, достаточен для того, чтобы слой битума в области между излучинами трубки для хладагента вошел в контакт с опорной пластиной. Если ход будет больше, чем безусловно необходимо для этого, то битум будет загоняться в пазухи между эллиптическим в сечении трубопроводом и опорной пластиной. Поэтому известный способ будет непригоден, если вместо битумной пластины потребуется приформовать пластину из высокоэффективного изоляционного материала, так как проникновение такого материала в пазухи ухудшит теплообмен между трубкой с хладагентом и опорной пластиной, и следовательно, понизит эффективность испарителя.

Раскрытие изобретения

Задача предлагаемого изобретения состоит в том, чтобы предложить способ изготовления теплообменника, который позволит изготовлять высококачественный теплообменник даже при невысоких требованиях к допускам на изготовление, и предложить теплообменник, который можно изготовить по этому способу.

Эта задача решена согласно изобретению тем, что фасонная деталь из теплоизоляционного материала изготовляется предварительно с расположенной на ее поверхности канавкой, в которой размещается трубка, до того, как на поверхности будет закреплена опорная пластина. Даже если угол кривизны отдельных изгибов трубки будет незначительно отклоняться от соответствующего угла изгибов канавки, трубку можно будет все же с помощью легкого упругого изгиба без труда уложить в канавку. Это позволит исключить возможность расплющивания трубки между фасонной деталью и опорной пластиной.

Предпочтительно толщина трубки в перпендикулярном направлении к поверхности фасонной детали первоначально больше глубины образованной в ней канавки, так что трубка, даже когда она лежит на дне канавки, немного выступает из нее. Если теперь прижать фасонную деталь и опорную пластину друг к другу, чтобы, по меньшей мере, части поверхности фасонной детали пришли в соприкосновение с опорной пластиной, то одновременно трубка будет сдавлена между опорной пластиной и фасонной деталью, вследствие чего желательным образом улучшится теплопередача между пластиной и трубкой.

Фасонную деталь можно просто и экономично изготовить посредством экспандирования пластмассы в фасонном инструменте. Особенно пригодны для экспандирования полистирол и полиуретан.

Для получения хорошего изоляционного эффекта желательно, чтобы материал был пористым, и в то же время обладал достаточной твердостью для сплющивания трубки для хладагента. При изготовлении фасонной детали из полистирола подходящая плотность составляет 30-50 г/дм3, а предпочтительно 40 г/дм3.

Фасонная деталь и опорная пластина предпочтительно склеиваются, в частности соединяются клейкой пленкой. Эта клейкая пленка предпочтительно наносится на фасонную деталь, так как при нанесении клейкой пленки на опорную пластину пришлось бы оставлять свободными от клея места, в которых трубка для хладагента касается опорной пластины, чтобы не ухудшать теплопередачу между трубкой и опорной пластиной.

Краткий перечень чертежей

Прочие признаки и преимущества изобретения вытекают из следующего описания примера реализации со ссылками на прилагаемые чертежи. На чертежах представлены:

На Фиг.1 - перспективное изображение компонентов предлагаемого в изобретении испарителя до их сборки.

На Фиг.2 - предлагаемый в изобретении испаритель в окончательно собранном виде в разрезе.

Осуществление изобретения

На фиг.1 опорная пластина испарителя из алюминия обозначена цифрой 1, трубка для хладагента цифрой 2, а фасонная деталь из пенополистирола цифрой 3. Трубка 2 для хладагента имеет патрубок 4, через который испарившийся хладагент выходит из трубки 2 во всасывающий трубопровод, предназначенный для присоединения к входу компрессора, и проходящий внутри патрубка всасывающего трубопровода капилляр 5, предназначенный для подвода жидкого хладагента из конденсатора. Свободный конец капилляра 5 зажат в сужении 6 трубки 2 для хладагента. Отсюда хладагент течет по изогнутой в форме меандра трубке 2 к присоединению 7, через который он втекает в патрубок 4 всасывающего трубопровода.

Фасонная деталь 3 представляет собой пластину из пенополистирола, на поверхности 8 которой образована канавка 9, ход которой повторяет форму трубки 2 для хладагента. Глубина канавки 9 немного меньше диаметра трубки 2 для хладагента, имеющей еще до соединения отдельных компонентов 1, 2, 3 круглое сечение. Плотность пенополистирола составляет 40 г/дм3. На поверхность 8 фасонной детали 3 нанесен быстросхватывающийся клей.

При сборке испарителя сначала в канавку 9 фасонной детали 3 вкладывается трубка 2 для хладагента. Накладываемая на фасонную деталь 3 и трубку 2 для хладагента опорная пластина 1 сначала соприкасается только с трубкой 2 для хладагента. Созданная таким образом комбинация сжимается между двумя штампами (не изображенного) пресса. Твердость материала фасонной детали 3 и толщина стенки трубки 2 для хладагента подобраны так, что происходит пластическая деформация поперечного сечения трубки, прежде чем поверхность 8 соприкоснется с опорной пластиной 1. Таким образом, проникновение материала фасонной детали 3 в пазухи 11 между трубкой 2 для хладагента и опорной пластиной 1 в изображенном примере исключается. Однако плотность пенополистирола, из которого сделана фасонная деталь 3, может быть выбрана и такой, чтобы пазухи 11 также были заполнены материалом фасонной детали 3.

После того, как движение пресса прекращается, в целом упругая остаточная деформация трубки 2 для хладагента остается, так что трубка будет находиться под давлением между опорной пластиной 1 и фасонной деталью 3, тогда как на слой клея между поверхностью 8 и опорной пластиной 1 будет действовать растягивающее усилие. В процессе старения испарителя эти упругие напряжения могут ослабевать вследствие прогрессирующей усадки участков 10.

Перед склеиванием опорной пластины 1 с фасонной деталью 3 или после этого склеивания в желобок 13, проходящий от края фасонной детали 3 между двумя параллельными участками канавки 9, можно вставить датчик температуры 12 для контроля температуры испарителя.

В другом варианте осуществления изобретения несущая пластина 1 и фасонная деталь 3 скрепляются друг с другом не с помощью нанесенного клея, а с помощью клейкой пленки. Эта клейкая пленка наносится на поверхность 8 фасонной детали 3 до укладки трубки 2 для хладагента в канавку 9. Затем трубка 2 для хладагента накладывается на клейкую пленку над канавкой 9 и вдавливается в канавку 9, причем клейкая пленка в зависимости от характеристик материала может рваться или растягиваться вдоль канавки 9. Как и в вышерассмотренном варианте, происходит уплощение трубки 2 для хладагента и склеивание опорной пластины 1 с фасонной деталью 3 в ходе такой же технологической операции.

1. Способ изготовления теплообменника, включающий в себя следующие операции:

a) приготавливают опорную пластину (1), фасонную деталь (3) из теплоизоляционного материала, имеющую поверхность (8) с расположенной на этой поверхности (8) канавкой (9) и сформованную в соответствии с ходом канавки (9) трубку (2) для теплоносителя,

b) помещают трубку (2) в канавку (9),

c) закрепляют опорную пластину (1) на поверхности (8).

2. Способ по п.1, отличающийся тем, что толщина трубки (2) в направлении, перпендикулярном к поверхности (8), больше глубины канавки (9), и что трубку (2) сплющивают между опорной пластиной (1) и фасонной деталью (3), пока, по меньшей мере, части поверхности (8) не соприкоснутся с опорной пластиной (1).

3. Способ по п.1 или 2, отличающийся тем, что фасонная деталь (3) изготовлена из пластмассового материала посредством экспандирования.

4. Способ по п.3, отличающийся тем, что пластмассовым материалом является полистирол.

5. Способ по п.4, отличающийся тем, что полистирол экспандируют до плотности 30-50 г/дм3.

6. Способ по одному из пп.1 и 2, 4 и 5, отличающийся тем, что закрепление производят путем склеивания.

7. Способ по п.6, отличающийся тем, что на поверхность (8) фасонной детали (3) перед сжатием наносится клейкая пленка.

8. Теплообменник с опорной пластиной (1), закрепленной на пластине (1) фасонной деталью (3) из теплоизоляционного материала, в которой на поверхности (8), обращенной к опорной пластине (1), образована канавка (9), в которой помещается трубка (2) для теплоносителя, отличающийся тем, что канавка (9) на фасонной детали (3) сформована предварительно, и трубка (2) вставлена в канавку (9).

9. Теплообменник по п.8, отличающийся тем, что трубка (2), по меньшей мере, частично сплющена и прилегает сплющенной поверхностью к опорной пластине (1).

10. Теплообменник по п.9, отличающийся тем, что трубка (2) окружена теплоизоляционным материалом фасонной детали (3) до сплющенной части.

11. Теплообменник по одному из пп.8-10, отличающийся тем, что трубка (2) сжата между опорной пластиной (1) и фасонной деталью (3) в направлении глубины канавки (9).

12. Теплообменник по п.8 или 10, отличающийся тем, что фасонная деталь изготовлена из экспандированного пластмассового материала.

13. Теплообменник по п.12, отличающийся тем, что экспандированный пластмассовый материал уплотнен у дна канавки (9).

14. Теплообменник по п.12, отличающийся тем, что пластмассовым материалом является полистирол.

15. Теплообменник по п.14, отличающийся тем, что экспандированный полистирол имеет плотность от 30 до 50 г/дм3.

16. Теплообменник по одному из пп.8-10, 13-15, отличающийся тем, что опорная пластина (1) склеена с фасонной деталью (3).

17. Теплообменник по п.16, отличающийся тем, что между опорной пластиной (1) и фасонной деталью (3) имеется клейкая пленка.

18. Теплообменник по одному из пп.8-10, 13-15, 17, отличающийся тем, что на поверхности (8) фасонной детали (3) образован желобок (13) для датчика температуры (12).



 

Похожие патенты:

Изобретение относится к теплоэнергетике и может быть использовано в холодильной технике. .

Изобретение относится к тяжелой промышленности. .

Изобретение относится к теплотехническим устройствам, а именно к теплообменникам рекуперативного типа. .

Изобретение относится к теплообменной технике и может быть использовано в испарителях для рефрижераторных контуров. .

Изобретение относится к теплообменным устройствам, используемым в мембранной технике для термостатирования обрабатываемых сред и продуктов мембранного разделения и в аппаратах спиртового производства для проведения процессов конденсации в системах, содержащих газы.

Изобретение относится к теплообменной технике и может быть использовано в холодильном машиностроении. .

Изобретение относится к теплообменной аппаратуре и может быть использовано в энергетической и машиностроительной промышленности. .

Изобретение относится к компрессионным термическим устройствам

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах

Изобретение относится к области теплотехники и может быть использовано в теплообменниках

Изобретение относится к области теплотехники и может быть использовано при изготовлении теплообменников, в частности, для бытового холодильного аппарата. Проволочно-трубный теплообменник, в частности, для бытового холодильного аппарата включает в себя два слоя проволоки и трубу хладагента, проходящую в промежуточном пространстве между слоями. Промежуточное пространство, по меньшей мере, частично заполнено битумом. Битумную пленку нагревают и продавливают внутрь промежуточного пространства сквозь зазоры между проволоками. Технический результат - повышение эффективности теплообмена между средой-теплоносителем и средой, аккумулирующей энергию, независимо от того, в каком положении монтируется теплообменник, и упрощение изготовления. 3 н. и 11 з.п. ф-лы, 6 ил.

Изобретение предназначено для применения в теплотехнике и может быть использовано в теплообменных аппаратах с оребренными трубами. В теплообменном аппарате оребренная теплообменная труба диаметром d выполнена серпантинообразной с внешним диаметром оребрения D и толщиной ребер L1, расположенных на расстоянии L2 друг от друга, при этом амплитуда серпантина A по внешнему диаметру оребрения составляет не менее A = D × ( 2 + 1 L 1 + L 2 L 1 − 1 ) период волны серпантина P не менее P = 2 D × ( 1 + 1 L 1 + L 2 L 1 − 1 ) Технический результат: интенсификация теплообмена за счет турбулизации потока, проходящего внутри оребренных серпантинообразных труб, и увеличение площади теплообмена аппарата. 22 з.п. ф-лы, 8 ил., 2 табл.

Группа изобретений относится к холодильному аппарату и к испарителю, используемому в таком холодильном аппарате. Испаритель для холодильного аппарата содержит трубу, по которой проходит хладагент. Указанный испаритель содержит по меньшей мере одну несущую пластину, на которой закреплена труба. Между трубой и несущей пластиной расположен теплораспределительный слой. Теплораспределительный слой является графитосодержащим. Также описан холодильный аппарат. Группа изобретений направлена на обеспечение хорошего теплообмена между трубой и несущей пластиной, повышение экономичности. 2 н. и 13 з.п. ф-лы, 6 ил.

Группа изобретений относится к холодильной технике. Испаритель для холодильного аппарата включает в себя трубу (11) для хладагента, по меньшей мере, одну несущую пластину (7), на которой закреплена труба (11), и расположенную между трубой (11) и несущей пластиной (7) теплораспределительную пластину (12), имеющую выступы (18), которыми зажимается труба (11). Теплораспределительная пластина (12; 21) образована из пластмассы с добавкой из теплопроводного материала и имеет канавку, прилегающую к трубе (11; 23, 24) с геометрическим замыканием. Техническим результатом является улучшение теплопередачи. 3 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к теплотехнике и может использоваться в жидкостных теплообменниках. В жидкостно-жидкостном теплообменнике, соединяющем секции труб, закрепленных в герметичном корпусе и подключенных к раздельным коллекторам по контурам охлаждающих теплоносителей, в контуре змеевикообразного теплоносителя каждая секция труб выполнена в виде спиралеобразного конусного змеевика сходящегося и расходящегося типа, установленных попарно большими основаниями, обращенными друг к другу, и попарно меньшими основаниями, обращенными друг к другу, причем секции разделены поперечными перегородками в местах больших оснований змеевиков отверстиями кольцеобразных прорезей, в местах меньших оснований - центральными отверстиями в контуре охлаждающего теплоносителя. Технический результат - упрощение конструкции при повышении уровня стабильности теплопередачи температуры хладона. 3 ил.

Теплообменное устройство содержит элементы в виде спирально навитых труб с чередующимися прямыми и кольцеобразными участками, расположенными напротив друг друга. Элементы внедрены друг в друга кольцеобразными участками. Прямые участки смежных элементов в теплообменном устройстве располагаются с одной стороны, а кольцеобразные - с другой, при этом элементы в поперечном сечении теплообменного устройства расположены вокруг его оси по окружности, с ориентацией кольцеобразных участков на указанную ось. Прямые участки в элементах могут располагаться в разных плоскостях, под углом друг к другу. В этом случае кольца у кольцеобразных участков имеют различные диаметры, наибольшие в середине элементов, и наименьшие на его концевых участках. При совпадении направления навивок у смежных элементов плоскости, прилегающие к внешней стороне кольцеобразных участков, пересекаются под острым углом с осью теплообменного устройства. При взаимно противоположном направлении навивок у смежных элементов упомянутые плоскости и ось параллельны. Достигается значительное уменьшение габаритов теплообменного устройства за счет плотной компоновки смежных элементов в нем, а также возможность размещать его в цилиндрических, кольцевых, торообразных и сферических полостях. 3 з.п. ф-лы, 14 ил.

Радиатор // 2577438
Настоящее изобретение относится к радиатору (1) для отопления помещений или частей помещений, содержащему основной корпус (2), который имеет ячеистую структуру (3) и который обеспечивает две расположенные на наружной стороне большие поверхности (4), причем каждая из больших поверхностей снабжена экраном (5), а также блок (6) параллельных труб, который встроен в ячеистую структуру (3) основного корпуса (2) и проходит через нее, и соединительное устройство, которое содержит гидравлический блок, соединяющий блок (6) параллельных труб с источником теплоносителя и/или возвратным трубопроводом, а также узел крепления для крепления к стене, при этом полости, образованные ячеистой структурой, по меньшей мере, частично заполнены вспученным графитом. 8 з.п. ф-лы, 9 ил.
Наверх