Высокотемпературный композиционный материал для уплотнительного покрытия

Изобретение относится к порошковой металлургии, в частности к высокотемпературным композиционным материалам. Может использоваться для нанесения уплотнительных покрытий на детали газотурбинных двигателей. Высокотемпературный композиционный материал содержит двуокись циркония, стабилизированную 7% оксида иттрия, при следующем соотношении компонентов, мас.%: стабилизированная двуокись циркония фракции 100-250 мкм - 10-15; нитрид бора фракции 450-630 мкм - 15-25; нихромовое волокно, длина 3-5 мм - 9-12; стабилизированная двуокись циркония активированной пылевидной фракции - остальное. Полученный материал обладает высокой стойкостью в условиях термоциклирования и обеспечивает уменьшение износа контртела. 1 табл.

 

Изобретение относится к области порошковой металлургии и может быть использовано для нанесения уплотнительных покрытий на детали газотурбинных двигателей.

Известен уплотнительный материал на основе никеля, содержащий железо, хром, алюминий, иттрий. Уровень прочностных и антифрикционных свойств материала регулируют пористостью и применением наполнителей - твердых смазок (В.Ф.Лыкова и др. Порошковые композиции на основе железа и никеля для уплотнений газовых турбин / Процессы и материалы порошковой металлургии. М.: Металлургия, 1985, с. 45-51).

Однако материал получается хрупким, что приводит к его недостаточной стойкости в условиях термоциклирования, обладает высокой твердостью и интенсивно изнашивает контртело.

Наиболее близким по технической сущности является высокотемпературный композиционный материал для уплотнительного покрытия, содержащий 30-40 мас.% никелевого сплава; 40-50 мас.% двуокиси циркония; 3-8 мас.% высокотемпературного припоя; композит НП-4, содержащий интерметаллид никеля, нитрид бора, графит, фосфатное связующее - остальное (патент РФ №2133297, С23С 4/10, 1998).

При температурах выше 900°С в материале протекают процессы химического взаимодействия. Снижается количество твердой смазки (BN), пластичной компоненты (Ni) и увеличивается содержание твердых фаз (Ni3С). Это приводит к снижению стойкости в условиях термоциклирования (появление трещин) и чрезмерному износу контртела.

Задача изобретения - повышение стойкости материала при работе в условиях термоциклирования и уменьшение износа контртела.

Поставленная цель достигается тем, что в высокотемпературном композиционном материале для уплотнительного покрытия, содержащем двуокись циркония, нитрид бора и нихром, используют двуокись циркония, стабилизированную 7% оксидом иттрия, фракции 100-250 мкм и активированной пылевидной фракции, нитрид бора фракции 450-630 мкм и нихром в виде волокна длиной 3-5 мм, при следующем соотношении компонентов, мас.%:

стабилизированная двуокись циркония,
фракции 100-250 мкм- 10-15;
нитрид бора-15-25;
нихромовое волокно- 9-12;
стабилизированная двуокись циркония
активированной пылевидной фракцииостальное

Уплотнительные толстослойные керамические покрытия на металлах, как правило, отличаются низкой термической стойкостью ввиду того, что при нагреве на границе «основа - покрытие» возникают значительные термические напряжения. Низкая пластичность керамики не способствует релаксации этих напряжений, а ведет к образованию трещин на границе керамики с основой. Слабая адгезия керамического покрытия с металлической основой практически не препятствует распространению трещин на границе между ними.

Для получения керамических покрытий на основе двуокиси циркония, как правило, требуется высокая температура 1500-1700°С. Однако такие условия не приемлемы в тех случаях, когда керамика используется в комбинации с металлическими сплавами. Предельная температура нагрева жаропрочных сплавов на никелевой основе не должна превышать 1100°С, поскольку при более высоких температурах идет растворение упрочняющей фазы и разупрочнение сплава.

Для снижения температуры формирования керамического покрытия проводили активирование порошка двуокиси циркония, стабилизированного 7% оксидом иттрия, путем длительного его измельчения в шаровой мельнице при ограниченном содержании водной фазы.

Введение частиц нитрида бора повышает термическую стойкость керамического покрытия за счет их демпфирующей способности и существенно снижает коэффициент трения материала покрытия, улучшая его прирабатываемость.

Экспериментально установлено, что при длине нихромового волокна менее 3 мм снижается армирующая способность, а при длине нихромового волокна больше 5 мм не обеспечивается равномерное распределение нихромового волокна между армирующими элементами подложки. Полученные покрытия не отвечают требуемой термостойкости.

Пример реализации способа.

В шаровой мельнице измельчали порошок двуокиси циркония, стабилизированного 7% оксидом иттрия, в водной среде в течение 4-8 ч. Получали двуокись циркония активированной пылевидной фракции, в которую добавляли двуокись циркония, фракции 100-250 мкм, нитрид бора, фракции 450-630 мкм, нихромовое волокно, длина 3-5 мм. Состав тщательно перемешивали, доводили до влажности 28-32% и наносили на подготовленную поверхность металлической основы. Покрытие сушили и прессовали в вакууме при нагреве до 1100°С.

На никелевом сплаве ВЖ-98 были получены уплотнительные покрытия толщиной 2-3 мм. Проведены испытания термостойкости полученных покрытий в условиях термоциклирования. Режим термоциклирования: нагрев от 20 до 1000°С за 15 минут, охлаждение с 1000 до 20°С за 15 минут. Результаты испытаний представлены в таблице.

Таблица
№ п/пВремя помола, часZrO2 - 7% Y2O3, фракции 100-250 мкмBN фракции 450-630 мкмNi-CrВлажность шликера %Количество термоцикловОтносительный износ контртела
мас.%мас.%Длина, мммас.%
1410155928>1000,20
2410155930>1000,19
3410153930>1000,20
4415155930>1000,18
5815155930>1000,19
6410255930>1000,13
7410253930>1000,14
8410253930640,12
94102551232>1000,11
10410255930540,12
прототип270,42

Высокотемпературный композиционный материал для уплотнительного покрытия, содержащий двуокись циркония, нитрид бора и нихром, отличающийся тем, что он содержит двуокись циркония, стабилизированную 7% оксида иттрия, фракции 100-250 мкм и активированной пылевидной фракции, нитрид бора фракции 450-630 мкм и нихром в виде волокна длиной 3-5 мм при следующем соотношении компонентов, мас.%:

стабилизированная двуокись циркония,
фракции 100-250 мкм10-15
нитрид бора15-25
нихромовое волокно9-12
стабилизированная двуокись циркония
активированной пылевидной фракцииостальное



 

Похожие патенты:
Изобретение относится к области металлургии, в частности, к способу получения подложки из нитрида алюминия (AlN) и может найти применение для изготовления изделий с покрытиями.

Изобретение относится к области металлургии, в частности способу получения эрозионно стойких теплозащитных покрытий методом плазменного напыления, и может найти применение в ракетной технике при изготовлении камер сгорания ЖРД с металлокерамическим эрозионно стойким теплозащитным покрытием на основе композиции ZrO2+ NiCr из механических смесей.
Изобретение относится к области порошковой металлургии и может быть использовано при напылении газотермических покрытий на детали, эксплуатируемые в экстремальных условиях, как в виде порошка, так и в виде гибких шнуровых материалов, изготовленных на основе этого порошка.

Изобретение относится к теплобарьерным покрытиям, которые обладают гибкостью, достаточной для адаптации к деформациям подложки. .

Изобретение относится к изделию, которое подвержено действию горячего агрессивного газа, в частности детали тепловой машины, например газовой турбины. .

Изобретение относится к области металлургии, в частности к формированию защитных покрытий, и может найти применение в машиностроении при упрочнении инструмента и изношенных поверхностей различных деталей.

Изобретение относится к способам получения наноструктурных материалов, позволяющих использовать их при нанесении наноструктурного покрытия в стандартных установках термического напыления.

Изобретение относится к области композиционных материалов, в частности к нанесению газотермических покрытий для упрочнения и восстановления деталей, эксплуатируемых в условиях износа и агрессивных сред.

Изобретение относится к области порошковой металлургии и может быть использовано при нанесении покрытий на детали, эксплуатируемые при одновременном воздействии ударных нагрузок, износа и повышенных температур.
Изобретение относится к порошковой металлургии, в частности к составам шихты для получения пористых проницаемых материалов с заданным средним размером пор. .
Изобретение относится к порошковой металлургии, в частности к составам шихт для получения пористых проницаемых материалов методом самораспространяющегося высокотемпературного синтеза.
Изобретение относится к области металлургии, а именно к способам получения литых оксидных материалов на основе оксида кремния, которые могут быть использованы для получения керамических стержней сложной конфигурации для литья лопаток газотурбинных двигателей.

Изобретение относится к области металлургии, а именно к электролитическому получению металлов, например алюминия. .

Изобретение относится к порошковой металлургии, в частности к способам получения литого оксидного материала на основе оксида алюминия, который может быть использован в области авиационного двигателестроения для получения литейных форм, а также изготовления абразивных и жаростойких материалов.

Изобретение относится к способам получения неорганических соединений и может быть использовано в препаративных целях, производстве типографских красок и абразивных материалов.

Изобретение относится к композитному материалу и, более конкретно, к медному композитному материалу с низким коэффициентом теплового расширения и высокой теплопроводностью, способу его получения и различным вариантам использования, таким, как использование в полупроводниковых приборах, где этот композитный материал применяется.

Изобретение относится к области порошковой металлургии, в частности составам шихты для получения пористого проницаемого материала методом самораспространяющегося высокотемпературного синтеза (СВС), применяемого для изготовления фильтрующих элементов, пламегасителей, аэраторов и других пористых изделий.

Изобретение относится к получению порошков высокочистых тугоплавких металлов, клапанных субоксидов тугоплавких металлов и клапанных металлов или их сплавов, пригодных для изготовления целого ряда электрических, оптических и прокатных изделий/деталей, получаемых из соответствующих их окислов при металлотермическом восстановлении в твердой или жидкой форме этих окислов, используя восстанавливающий агент, который поддерживает после воспламенения высокоэкзотермическую реакцию, предпочтительно осуществляемую при непрерывной или периодической подаче окисла, например при перемещении под действием силы тяжести.
Наверх