Способ управления импульсным преобразователем постоянного напряжения со стабилизацией предельного тока
Владельцы патента RU 2249842:
Федеральное государственное унитарное предприятие "Научно-производственный центр "Полюс" (RU)
Изобретение относится к способам управления импульсными преобразователями постоянного напряжения. Технический результат заключается в снижении погрешности стабилизации выходного тока преобразователя в случае, когда выходной ток достигает заданного предельного значения и преобразователь переходит из режима стабилизации напряжения в режим стабилизации тока. Достигается результат тем, что выходной ШИМ-сигнал управления регулирующим элементом преобразователя получают в результате конъюнкции двух ШИМ-сигналов, первый из которых формируют на основе сигнала рассогласования по напряжению, а второй - на основе сигнала рассогласования по току. При этом уровень сигнала рассогласования по току корректируется в зависимости от значения демодулированного выходного ШИМ-сигнала управления регулирующим элементом. 4 ил.
Изобретение относится к электротехнике, а именно к способам управления импульсными преобразователями постоянного напряжения и тока, которые широко применяются для питания различных устройств во многих областях техники.
Известен способ стабилизации предельного тока в преобразователе постоянного напряжения с ШИМ, когда полученный сигнал рассогласования текущего значения тока преобразователя и опорного значения тока, задающего его граничное значение, суммируется с сигналом рассогласования по напряжению. При этом с помощью нелинейного элемента с односторонней проводимостью исключается влияние токовой обратной связи на работу преобразователя до тех пор, пока его рабочий ток не превысит граничное значение. В режиме стабилизации предельного тока на выходе усилителя сигнала ошибки формируется результирующий сигнал рассогласования по току и напряжению, который с помощью синхронизирующего напряжения пилообразной формы преобразуется в выходной сигнал ШИМ [1, с.92-96].
Функциональная схема широтно-импульсного модулятора, реализующего известный способ стабилизации предельного тока, показана на фигуре 1, где 1 - первый сумматор; 2 - усилитель сигнала ошибки; 3 - компаратор; 4 - второй сумматор; 5 - нелинейный элемент; 6 - генератор пилообразного напряжения.
Для коэффициента заполнения ШИМ в режиме стабилизации предельного тока при этом способе управления справедливо выражение
![]()
где Кз - коэффициент заполнения (относительная длительность) импульсов на выходе ШИМ;
UU - текущее значение выходного напряжения;
Uо.U - опорное значение сигнала обратной связи по напряжению;
UI - напряжение, пропорциональное текущему значению выходного тока;
Uо.I - опорное значение сигнала обратной связи по току;
Uпил - амплитуда пилообразного напряжения;
КU - коэффициент усиления усилителя сигнала ошибки;
ΔUcm=UU-Uо.U - статическая ошибка регулирования выходного напряжения преобразователя.
Из (1) можно получить формулу для оценки точности стабилизации предельного тока при рассмотренном варианте построения ШИМ
![]()
Модификацией известного способа стабилизации предельного тока преобразователя является случай, когда сигнал рассогласования по току через отдельный усилитель сигнала ошибки и нелинейный элемент суммируется с усиленным сигналом рассогласования по напряжению [2, с.294-296].
Пример реализации такого способа управления приведен на фигуре 2, где: 1, 3...6 - то же, что и на фигуре 1; 7 - усилитель сигнала ошибки регулирования напряжения; 8 - усилитель сигнала ошибки регулирования тока; 9 - сумматор.
Точность стабилизации в этом случае можно определить из выражения
![]()
где KI - коэффициент усиления усилителя сигнала ошибки регулирования тока;
КU - коэффициент усиления усилителя сигнала ошибки регулирования напряжения.
Очевидно, что при КU=КI выражения (2) и (3) равнозначны. В то же время второй способ более универсален, поскольку позволяет проводить раздельную настройку контуров регулирования напряжения и тока.
Анализ выражений (2) и (3) показывает, что обоим рассмотренным способам управления присущ недостаток - погрешность стабилизации предельного тока преобразователя, обусловленная зависимостью регулируемого значения тока, во-первых, от сигнала рассогласования по напряжению (ΔUcm) и, во-вторых, от входных возмущающих воздействий (учитывается коэффициентом Кз, который является функцией входного напряжения, сопротивления нагрузки и сопротивления силовой цепи преобразователя).
Предлагаемое изобретение решает задачу уменьшения погрешности стабилизации предельного значения выходного тока преобразователя постоянного напряжения.
Текущие значения сигналов обратной связи преобразователя по напряжению и току сравнивают с опорными значениями. На основании результатов сравнения вырабатывают сигналы рассогласования по напряжению и по току. С помощью сигнала рассогласования по напряжению и сигнала пилообразной формы формируют первый ШИМ-сигнал, который используют для управления регулирующим элементом преобразователя в то время, пока значение его выходного тока находится в допустимом рабочем диапазоне (режим стабилизации напряжения). С помощью сигнала рассогласования по току и пилообразного напряжения формируют второй ШИМ-сигнал таким образом, что происходит модуляция одноименных фронтов полученных ШИМ-сигналов. Выходной ШИМ-сигнал, управляющий регулирующим элементом преобразователя, формируется в результате конъюнкции первого и второго ШИМ-сигналов. Полученный выходной управляющий ШИМ-сигнал демодулируют и полученный сигнал коррекции суммируют с сигналом рассогласования по току.
Пример функциональной схемы ШИМ, в котором реализуется предлагаемый способ управления, показан на фигуре 3. В данном ШИМ условно можно выделить каналы регулирования напряжения и тока. Канал регулирования напряжения состоит из сумматора 1, который на основании сравнения сигнала обратной связи по напряжению UU и опорного сигнала Uо.U вырабатывает сигнал рассогласования по напряжению, усилителя сигнала ошибки регулирования напряжения 7 и компаратора 11, на выходе которого формируется первый ШИМ-сигнал UШИМ1. Канал регулирования тока включает в себя сумматор 4, который на основании сравнения сигнала обратной связи по току UI и опорного сигнала Uо.I вырабатывает сигнал рассогласования по току, сумматор 10, который добавляет к сигналу рассогласования по току сигнал коррекции UК, формируемый демодулятором 14, компаратор 12, на выходе которого формируется второй ШИМ-сигнал UШИМ2. Для формирования обоих ШИМ-сигналов используется общий генератор синхронизирующего напряжения пилообразной формы 6. ШИМ-сигналы поступают на входы логического элемента 13, который выполняет операцию конъюнкции.
На фигуре 4 представлены временные диаграммы, поясняющие сущность предлагаемого способа управления. Из фигуры 4 видно, что в режиме стабилизации напряжения уровень сигнала на "отрицательном” входе компаратора 12 канала регулирования тока Up.I, условно разделенного на составляющие Uо., UI и UК, находится ниже пилообразного напряжения. Поэтому сигнал на выходе компаратора 12 UШИМ2 равен логической "1" и на выход ШИМ через логический элемент 13 проходит первый ШИМ-сигнал Uшим1. По мере роста выходного тока сигнал Up.I попадает в зону пилообразного напряжения, и в момент равенства UI и Uо.I первый и второй ШИМ-сигналы оказываются равными (граничный режим). Дальнейшие внешние воздействия, например, уменьшение сопротивления нагрузки преобразователя, приводят к переходу схемы в режим стабилизации тока. В этом режиме из-за снижения выходного напряжения преобразователя ШИМ-сигнал UШИМ1 становится равным логической "1" и не влияет на работу ШИМ, сигнал на выходе ШИМ определяется только работой канала регулирования тока. Выходной ток, пропорциональный UI, сохраняется постоянным.
В режиме стабилизации напряжения коэффициент заполнения выходных импульсов ШИМ не зависит от работы канала регулирования тока и равен
![]()
В режиме стабилизации тока коэффициент заполнения выходных импульсов ШИМ не зависит от работы канала регулирования напряжения и равен
![]()
Точность стабилизации тока можно оценить из формулы
UI=Uо.I+(1-Кз)Uпил-Uк. (6)
В режиме стабилизации тока без дополнительной коррекции на выходе ШИМ присутствовал бы модулированный по длительности сигнал разности текущего (UI') и опорного (Uо.I) значений тока преобразователя. Демодулятор, выполняющий функцию, обратную широтно-импульсному модулятору, формирует на своем выходе сигнал коррекции Uк, равный исходному (входному) сигналу ШИМ. То есть:
Uк=U'I-Uо.I=Uпил(l-Kз), (7)
где U'I=Uо.I+Uпил(l-Kз) - напряжение, пропорциональное текущему значению тока преобразователя без сигнала коррекции.
Подставив (7) в (6), получим
UI=Uо.I=const (8)
Сопоставляя выражение (6) для предлагаемого способа управления с выражениями (2) и (3) можно сделать заключение, что благодаря формированию отдельного ШИМ-сигнала для регулирования тока по приведенному алгоритму удается исключить влияние статической ошибки стабилизации напряжения (ΔUcm) на значение стабилизируемого тока. Введение в контур регулирования тока корректирующего сигнала UK, являющегося функцией коэффициента заполнения ШИМ, позволяет компенсировать воздействие на работу преобразователя в режиме стабилизации тока всех внешних дестабилизирующих факторов, влияние которых отражается на коэффициенте заполнения. Наиболее значимы из них изменение входного напряжения преобразователя и изменение сопротивления нагрузки. В результате значение стабилизируемого тока преобразователя постоянно и равно заданному предельному значению.
ИСТОЧНИКИ ИНФОРМАЦИИ
1 А.И.Чернышев, Ю.М.Казанцев, Е.Н.Патлахов. Стабилизатор напряжения с повышенной функциональной надежностью. - В кн.: Высокоэффективные источники и системы вторичного электропитания РЭА. Материалы семинара. Москва, 1983 г. с.92-96.
2 Системы электропитания космических аппаратов / Б.П.Соустин, В.И.Иванчура, А.И.Чернышев, Ш.Н.Исляев. - Новосибирск: ВО “Наука”. Сибирская издательская фирма, 1994. - 318 с.
Способ управления импульсным преобразователем постоянного напряжения со стабилизацией предельного тока, основанный на широтно-импульсной модуляции сигнала управления регулирующим элементом, заключающийся в том, что измеряют выходное напряжение и ток преобразователя, измеренное выходное напряжение сравнивают с заданным опорным напряжением и получают сигнал рассогласования по напряжению, на основе которого формируют первый ШИМ-сигнал, измеренный выходной ток преобразователя сравнивают с опорным током и получают сигнал рассогласования по току, отличающийся тем, что сигнал рассогласования по току используют для формирования второго ШИМ-сигнала, после конъюнкции первого и второго ШИМ-сигналов получают выходной ШИМ-сигнал управления регулирующим элементом, этот сигнал демодулируют и полученный сигнал коррекции суммируют с сигналом рассогласования по току.

























