Способ получения информационного образа рака молочной железы по маммограммам
Изобретение относится к информационной технологии в медицине. Его использование в качестве неинвазивной биопсии на уровне маркера на любой стадии развития рака молочной железы, а также в качестве скринингового метода выявления ранних стадий этого заболевания позволяет получить технический результат в виде выявления по маммограммам очагов злокачественного роста через аномальную асимметрию клеточных масс злокачественной опухоли относительно масс здоровых и нераковых клеток. Способ заключается в том, что полученную маммограмму переводят в цифровую форму в виде исходной матрицы чисел на шагах дискретизации. Технический результат достигается благодаря тому, что формируют в этой матрице через n-клеточный шаблон информационные ячейки из n новых значений чисел в клетках каждой ячейки, находят информационные образы показателя аномальной асимметрии и его положительной составляющей; выделенными признаками рака молочной железы считаются положительные значения аномальной асимметрии и его положительная составляющая, по которым получают конечные образы в виде рельефа распределения плотности выделенных признаков; конечные образы являются специфичными и служат для анализа маммограмм на наличие злокачественных опухолей. 3 з.п. ф-лы, 4 ил.
Изобретение относится к информационной технологии в медицине, в частности к определению злокачественных новообразований молочной железы, и может быть использовано в качестве неинвазивной биопсии на уровне маркера на любой стадии развития рака молочной железы, а также в качестве скринингового метода выявления ранних стадий этого заболевания.В настоящее время базовым методом определения опухолей молочной железы является маммография. С появлением компьютерных технологий появилась возможность создать ряд систем, позволяющих анализировать оцифрованные маммограммы.Например, известна система оценки маммограмм - Image Checker М1000 System. Она позволяет производить компьютерный анализ цифровых маммограмм для выявления микрокальцинатов и плотных масс опухоли, как градиентов интенсивности пикселей изображения, с разрешающей способностью 50 микрон в 12 битовой серой шкале. Сложные зрительные образы, такие, как спикулы, анализируются нейронными сетями. При совместном прочитывании радиологами улучшает чувствительность маммографии на 8%, что составляет общую чувствительность 88%. В данных методах используется мощная компьютерная техника для обработки изображения, на один снимок проводится приблизительно до 1 миллиарда операций [U.S. Food and Drug Administration, Diagnostic Aids for Cancer. //http: www.fda. gov/oashi / cancer/cdiag.html].Английские исследователи описывают специфические модели спикульных поражений, которые характеризуются патологическими образцами линейных структур и центральных масс на маммограммах. Линейные структуры детектировались с использованием факторного анализа для разделения систематических и случайных особенностей классов образцов. Центральные массы разделялись на рекурсивном медианном фильтровании с использованием признаков локальной ориентации. Для спикульных поражений размерами в 16 мм и больших образцов определена чувствительность 80% к 1,4% ложноположительным данных на изображении. Определение масс-детекции имеет чувствительность 80% к 23% ложно-положительным данным на изображении [Zwiggelaar, R., Parr, Т., Schumm, J. et al. Model-based detection of spiculated lesions in mammograms, Med. Image Anal., 1999, vol. 3 n.1, pp 39-62].Калифорнийские исследователи используют для поиска микрокальцинатов по маммограммам фильтрацию для автоматического анализа морфологии серой шкалы с 20% ложно отрицательных результатов. Анализируют оцифрованные маммограммы с пикселем 70 и 35 микрон и глубиной серой шкалы 4096 (12 bit). Алгоритм определяет микрокальцинаты, которые может пропустить радиолог. Каждый объект классифицируется на три категории: доброкачественные микрокальцинаты, суспициозные и артефакты. Данные представляются радиологу для последующего заключения [LN.Mascio, J.M.Hernandez and C.M.Logan, Lawrence Livermore National Laboratory Biology and Biotechnology Research Program, http://www-dsed. llnl. gov/documents/ imaging/jmhspie93.html].Эти и другие подобные автоматические системы нацелены на выявление анатомических и морфологических признаков, сопутствующих злокачественному росту, а также на выявление плотных масс опухолей. Такой анатомический подход не позволяет находить по маммограммам высокоспецифичные и универсальные признаки злокачественного роста, которые присутствуют даже на сверхранних стадиях развития рака молочной железы. Для такого рода задач нужен иной подход.Известен способ определения информационного образа аномалий функциональной организации физической системы [Патент РФ №2172519, G 06 T 11/00. Способ определения информационного образа аномалий функциональной организации физических систем (варианты) Останькович А.А., Вайман С.Д., БИ №23, 2001]. Данное изобретение выполнено на основе теории функциональных систем, разработанной Анохиным П.К. [Анохин П.К. Общие вопросы физиологических механизмов. Анализ и моделирование биологических систем. Труды международного симпозиума по техническим проблемам управления. Ереван, 24-28 сентября 1968 г., -М.: Наука, 1970 г., с.6-43].Под функциональной физической системой по определению Анохина П.К. понимается такой комплекс избирательно вовлеченных компонентов, взаимодействие и взаимоотношение которых приобретает характер взаимосодействия компонентов для получения фокусированного полезного результата.Способ выявления информационного образа аномалий функциональной организации физической системы, заключающийся в том, что получают двумерный сигнал, характеризующий физическую систему на интервале наблюдения, представляют его в числовой форме в виде матрицы чисел на шагах дискретизации, формируют в указанной матрице через четырехквадрантный информационный шаблон с размером квадранта, равным шагу дискретизации, информационные ячейки из четырех новых значений чисел, находящихся в четырех сопряженных квадрантах информационной ячейки, при этом новые значения чисел в квадрантах каждой ячейки получают путем смещения информационного шаблона на один шаг дискретизации по всей матрице и определения отклонения чисел, попавших в квадранты информационного шаблона, относительно среднего значения этих чисел по формуле:H'i=Hi-R,где R=(H1+H2+H3+H4)/4 - среднее значение чисел, попавших в квадранты информационного шаблона;H'i - новое значение числа в i-ом квадранте информационной ячейки;i - номера квадрантов ячейки (1, 2, 3, 4);Hi - число в i-ом квадранте ячейки,после формирования информационных ячеек находят удельные значения каждого квадранта в ячейке путем нормирования каждого значения квадранта по их сумме в ячейке, затем находят информационный образ степени связи функциональной организации физической системы в виде совокупности количественных характеристик степеней связи, соответственно порядку организации системы путем нахождения количественной характеристики каждой нормированной ячейки по соответствующей формуле, далее выявляют распределение плотности количественных характеристик степеней связи с помощью информационного окна размером не менее трех шагов дискретизации и не более одной четверти интервала наблюдения: накладывают информационное окно выбранного размера в любой угол полученного информационного образа степеней связи функциональной организации физической системы в виде совокупности количественных характеристик степеней связи и суммируют количественные характеристики, попавшие в информационное окно, затем смещают информационное окно на шаг дискретизации по всей матрице информационного образа, отражающего степень связи чисел в ячейках, каждый раз суммируя количественные характеристики степени связи, попавшие в новое информационное окно, и записывая результат в одно и то же место информационного окна, получая в результате всех смещений новый информационный образ в виде матрицы чисел, отражающих распределение плотности количественных характеристик степеней связи чисел в ячейках, анализируют полученный рельеф нового информационного образа с точки зрения выявления исследуемых аномалий функциональной организации физической системы, при необходимости повторяют выявление распределения плотности через новый размер информационного окна до получения рельефа исследуемых аномалий необходимого масштаба.Авторы пытались использовать этот способ для выявления очагов злокачественного роста по маммограмме. Однако получили неудовлетворительный результат.Предлагаемое изобретение выполнено также на основе теории П.К.Анохина в той ее части, которая рассматривает полезный результат как информационный эквивалент функциональных систем [Анохин П.К. Избранные труды. Кибернетика функциональных систем. -М.: Наука, 1980, с.82, с.303].Для случая злокачественного процесса в молочной железе полезные результаты функциональных систем организма и опухоли имеют противоположные цели: опухоль стремится расти за счет питательных веществ организма, а он пытается ликвидировать ее. Начиная с самых ранних стадий развития рака молочной железы, возникает различие в отношениях накопления тех и других результатов, т.к. скорость роста массы опухолевых клеток намного больше скорости их элиминации организмом.Изобретение решает задачу выявления информационного образа аномальных отношений в системе молочная железа - злокачественная опухоль.Техническим результатом, достигаемым при осуществлении заявленного изобретения, является выявление по маммограммам очагов злокачественного роста через аномальную асимметрию клеточных масс злокачественной опухоли относительно масс здоровых и нераковых клеток.Поставленная задача решается способом, предназначенным для выявления раковой опухоли и ее наиболее интенсивные точки роста, включающим получение маммограмм, представление ее в числовой форме в виде исходной матрицы чисел на шагах дискретизации, получение конечного изображения с использованием известного технологического приема выявления распределения плотности искомого вида информации с помощью выделенного информационного окна в виде квадрата не менее девяти шагов дискретизации и не более одной четверти исходной матрицы, и отличающимся тем, что для получения специфического информационного образа рака молочной железы по маммограмме, формируют в исходной числовой матрице через n-клеточный квадратный шаблон с размером одной клетки, равным шагу дискретизации, и размером самого шаблона не менее четырех клеток и не более четверти исходной матрицы, информационные ячейки из n новых значений чисел в клетках каждой ячейки, полученной путем смещения информационного шаблона на один шаг дискретизации по всей исходной матрице и определяют разность между числами, попавшими в клетки шаблона, и числом с минимальным значением в одной из клеток шаблона, по формуле:H'i=Hi-minHi,где Hi - исходное значение числа, попавшего в i-тую клетку информационного шаблона,H'i - новое значение числа в i-той клетке информационной ячейки,i -номера клеток ячейки, соответствующие номерам клетокшаблона (1, 2, 3,..., n);среди новых чисел H'i в ячейке находят максимальное Н'i, по которому нормируют все числа H'i, информационной ячейки, получая новый набор из нормированных чисел H"i, для всех клеток ячейки; затем вычисляют отклонение для всех H"i, по формуле:Vi=H"i-0,5,где ±Vi, - отклонение от уровня 0,5,0,5 - уровень, получаемый делением пополам максимального значения среди нормированных чисел H"i, который равен единице; далее суммируют отдельно положительные отклонения:





Формула изобретения
1. Способ получения информационного образа рака молочной железы, включающий получение маммограммы, представление ее в числовой форме в виде исходной матрицы чисел на шагах дискретизации, получение конечного изображения с использованием известного технического приема выявления распределения плотности искомого вида информации с помощью выделенного информационного окна в виде квадрата не менее девяти шагов дискретизации и не более одной четверти исходной матрицы чисел, отличающийся тем, что для получения специфического информационного образа рака молочной железы по маммограмме формируют в исходной числовой матрице через n-клеточный квадратный шаблон с размером одной клетки, равным шагу дискретизации, и размером самого шаблона не менее четырех клеток и не более четверти исходной матрицы информационные ячейки из новых значений чисел в клетках каждой ячейки, полученных путем смещения информационного шаблона на один шаг дискретизации по всей исходной матрице, и определяют разность чисел, попавших в клетки шаблона, и числа с минимальным значением в одной из клеток шаблона по формулеН'I = Нi - minНi,где Hi - исходное значение числа, попавшего в i-ю клетку информационного шаблона;Н'i - новое значение числа в i-й клетке информационной ячейки;i - номера клеток ячейки, соответствующие номерам клеток шаблона (1,2,3,...,n),по этим числам рассчитывают показатель информационной ячейки по последовательным формулам




РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4