Изобретение относится к электроизмерительной технике и может быть использовано, например, для проверки качества твердых и жидких электроизоляционных материалов. Техническим результатом является создание способа измерения диэлектрической проницаемости без разрушающего воздействия и достижения более высокой точности и достаточно простого в использовании. В способе определения диэлектрической проницаемости путем воздействия электромагнитного поля испытуемый образец помещают в межэлектродное пространство между измерительным плоским электродом и поверхностью вращающегося металлического диска, на котором закреплен полимерный пленочный электрет - источник электрического поля, определяют амплитудное значение индукционного тока измерительного электрода в случае, когда испытуемый образец находится в межэлектродном пространстве, амплитудное значение индукционного тока без помещения диэлектрика, а диэлектрическую проницаемость по приведенной математической формуле. 1 з.п. ф-лы, 1 ил.
Изобретение относится к электроизмерительной технике и может быть использовано, например, для проверки качества твердых и жидких электроизоляционных материалов.
Известны мостовой и резонансный способы измерения диэлектрической проницаемости твердых и жидких диэлектриков [1, 2], которые позволяют проводить измерение диэлектрической проницаемости электроизоляционных материалов в измерительной ячейке с накладными или напыленными в вакууме металлическими измерительными электродами.
Недостатком вышеуказанных способов измерения является то, что для их реализации необходимо использование накладных или напыляемых в вакууме металлических электродов.
Известен способ контроля толщины и диэлектрической проницаемости диэлектрика [3], который включает одновременное облучение исследуемого диэлектрика на металлическом основании излучением в СВЧ и ВЧ диапазонах. Частоту ВЧ излучения выбирают из условия, что толщина схемы-слоя меньше толщины металлического основания, измерение изменений величин продетектированных сигналов на ВЧ и СВЧ в отсутствие диэлектрика на металлическом основании и в его присутствии и определение толщины.
Известен способ определения диэлектрической проницаемости материала [4]. Способ включает возбуждение электромагнитных колебаний в микрополосковой линии с известными параметрами комплексной диэлектрической проницаемости, измерение ее импеданса в режимах холостого хода и короткого замыкания при размещении микрополосковой линии на поверхности исследуемого образца материала и при отсутствии исследуемого образца и вычисление диэлектрической проницаемости исследуемого образца материала.
Ближайшим аналогом является способ определения комплексной диэлектрической проницаемости материала [5]. Способ заключается в подаче на исследуемую пробу скачкообразно изменяющегося напряжения чередующейся полярности с периодом циклической частоты измерения, интегрировании поляризационного тока и регистрации величины поляризационного заряда в равноотстоящие моменты времени. При вычислении действительной части комплексной диэлектрической проницаемости выбирают количество отсчетов в течение полупериода не менее четырех, а при вычислении мнимой части - не менее 32. Вычисления компонент комплексной диэлектрической проницаемости производят суммированием величин отсчетов, умноженных на тригонометрические функции фазового угла (синус или косинус для действительной или мнимой части соответственно).
Недостатком известных способов и прототипа является то, что они достаточно сложны в применении.
Задачей предлагаемого изобретения является создание способа измерения диэлектрической проницаемости без разрушающего воздействия и достижения более высокой точности и достаточно простого в использовании.
Поставленная задача достигается тем, что в известном способе определения диэлектрической проницаемости путем воздействия электромагнитного поля испытуемый образец помещают в межэлектродное пространство между плоским измерительным электродом и поверхностью вращающегося металлического диска, на котором закреплен полимерный пленочный электрет - источник электрического поля, определяют амплитудное значение индукционного тока измерительного электрода в случае, когда испытуемый образец находится в межэлектродном пространстве I
x, амплитудное значение индукционного тока без помещения диэлектрика I
возд, а диэлектрическую проницаемость вычисляют по формуле

где
x - диэлектрическая проницаемость исследуемого диэлектрического материала;
возд - диэлектрическая проницаемость воздуха;
h
x - толщина исследуемого диэлектрического материала;
h
возд - толщина воздушного промежутка;
h - расстояние от поверхности измерительного электрода до поверхности вращающегося диска, на которой закреплен тонкопленочный электрет - источник электрического поля;
I
x - амплитудное значение индукционного тока измерительного электрода, измеренное с помощью осциллографа, для случая, когда исследуемый диэлектрик находится в межэлектродном измерительном промежутке;
I
возд - амплитудное значение индукционного тока для случая, когда межэлектродный измерительный промежуток заполнен только воздухом.
В качестве источника электрического поля используют тонкий пленочный электрет из конденсаторной пленки политетрафторэтилен (ПТФЭ).
Способ осуществляется следующим образом.
На чертеже представлена схема устройства для определения диэлектрической проницаемости.
На поверхности вращающегося диска 1 закрепляют предварительно заполяризованный электрет 2 круглой формы, диаметром - d. Исследуемый твердый диэлектрик 3 в виде цилиндра диаметром - D и высотой - H, где D>>d, помещают в промежутке между измерительным электродом 4 и поверхностью заземленного вращающегося диска 1 с закрепленным пленочным электретом 2.
Если необходимо выполнить измерения диэлектрической проницаемости - жидкого диэлектрика (например, трансформаторного масла), то в межэлектродный промежуток устанавливают тонкостенный полиэтиленовый сосуд цилиндрической формы с толщиной стенки - h, где h<<Н. Толщина стенки полиэтиленового сосуда h значительно меньше толщины слоя жидкости Н.
На клеммы электродвигателя подают постоянное напряжение питания от 0 до 30 В. В зависимости от подаваемого напряжения скорость вращения электродвигателя и соответственно скорость вращения диска 1 может меняться в пределах от 0 до 3000 об/мин.
Амплитуду сигнала от электрета 2 измеряют с помощью электронно-лучевого осциллографа. Для определения диэлектрической проницаемости твердых и жидких диэлектриков необходимо выполнить два измерения величины I
i.
Первое I
возд - измеряют при удалении испытуемого диэлектрика из измерительного межэлектродного промежутка (в межэлектродном промежутке находится только воздух). Второе I
x - измеряют, когда в измерительный межэлектродный промежуток помещают исследуемый диэлектрик.
Расчет величины диэлектрической проницаемости исследуемого диэлектрика производят по формуле

где h - расстояние от поверхности измерительного электрода до поверхности вращающегося диска; h
x - толщина исследуемого диэлектрика - толщина воздушного промежутка.
Н=h
возд+h
xПри полном заполнении межэлектродного промежутка исследуемым диэлектриком (например, проведение измерений в трансформаторном масле) величина диэлектрической проницаемости диэлектрического материала измеряется по формуле

где h
возд=0 и h
x=h.
Пример 1
Измерение диэлектрической проницаемости трансформаторного масла.
В тонкостенный стакан из полиэтилена с толщиной стенки 0,05 мм заливают трансформаторное масло (толщина слоя 10 мм). Устанавливают межэлектродное расстояние в измерительном конденсаторе 15 мм. Проверяют, что в этой области межэлектродных промежутков зависимость амплитуды измеряемого сигнала от величины обратного расстояния 1/h I=f(1/h) практически линейна и вклад краевой емкости минимален. В измерениях используют электрет пленки ПТЭФ - h=10 мкм, заполяризованный до величины электретной разности потенциалов V=1000 В. Производят два измерения амплитуды сигнала осциллографа I
возд - для пустого (заполненного воздухом) измерительного конденсатора и I
x - для измерительного конденсатора с исследуемым образцом - трансформаторным маслом.
По шкале электронно-лучевого осциллографа измерены два значения амплитуды сигнала I
возд=10,0 мм и I
x=16,6 мм. Считаем, что диэлектрическая проницаемость воздуха
возд=1.
По формуле производим расчет диэлектрической проницаемости трансформаторного масла

Расчетное значение диэлектрической проницаемости для трансформаторного масла равно 2,5, что находится в соответствии со справочными данными.
Пример 2
В измерениях используют пластинку из слюды мусковит, толщиной 10 мм. Устанавливают межэлектродное расстояние в измерительном конденсаторе 15 мм. Проверяют, что в этой области межэлектродных промежутков зависимость амплитуды измеряемого сигнала от величины обратного расстояния 1/h I
x=t(1/h) практически линейна и вклад краевой емкости минимален. В измерениях используют электрет пленки ПТЭФ - h=10 мкм, заполяризованный до величины электретной разности потенциалов V=1000 В. Производят два измерения амплитуды сигнала осциллографа I
возд - для пустого (заполненного воздухом) измерительного конденсатора и I
x - для измерительного конденсатора с исследуемым электроизоляционным материалом (слюда мусковит).
По шкале электронно-лучевого осциллографа измерены два значения амплитуды сигнала I
возд=10,0 мм и I
x=23,1 мм. Считаем, что диэлектрическая проницаемость воздуха
возд=1.
По формуле производим расчет диэлектрической проницаемости слюды мусковит

Расчетное значение диэлектрической проницаемости для слюды мусковит равно 6,7, что находится в соответствии со справочными данными.
Предлагаемый способ позволяет значительно упростить измерения диэлектрической проницаемости без разрушающего воздействия.
Источники информации
1. Казарновкий Д.М., Тареев Б.М. Испытания электроизоляционных материалов. - М.-Л.: Госэнергоиздат, 1963.
2. Эме Ф. Диэлектрические измерения. Для количественного анализа и для определения химической структуры. Пер. с немец. Штиллера Б.Н. Под ред. Заславского И.И. - М.: Химия, 1967.
3. Патент РФ №2012871, G 01 N 22/00, 1994.
4. Патент РФ №2103673, G 01 N 22/00, G 01 R 27/26, 1998.
5. Заявка РФ №94012374, G 01 R 27/26, 1996 (прототип).
Формула изобретения
1. Бесконтактный способ определения диэлектрической проницаемости твердых и жидких диэлектриков путем воздействия электромагнитного поля, отличающийся тем, что испытуемый образец помещают в межэлектродное пространство между измерительным плоским электродом и поверхностью вращающегося металлического диска, на котором закреплен полимерный пленочный электрет - источник электрического поля, определяют амплитудное значение индукционного тока измерительного электрода в случае, когда испытуемый образец находится в межэлектродном пространстве, амплитудное значение индукционного тока без помещения диэлектрика, а диэлектрическую проницаемость вычисляют по формуле

где
х - диэлектрическая проницаемость исследуемого диэлектрического материала;
возд. - диэлектрическая проницаемость воздуха;
h
х - толщина исследуемого диэлектрического материала;
h
возд. -толщина воздушного промежутка;
h - расстояние от поверхности измерительного электрода до поверхности вращающегося диска, на которой закреплен тонкопленочный электрет - источник электрического поля;
I
x - амплитудное значение индукционного тока измерительного электрода, измеренное с помощью осциллографа, для случая, когда исследуемый диэлектрик находится в межэлектродном измерительном промежутке;
1
возд. - амплитудное значение индукционного тока для случая, когда межэлектродный измерительный промежуток заполнен только воздухом.
2. Способ по п.1, отличающийся тем, что в качестве источника электрического поля используют тонкий пленочный электрет из конденсаторной пленки политетрафторэтилен.
РИСУНКИ
Рисунок 1