Стенд для испытаний бетоноломов
Изобретение относится к области гидромашиностроения и может быть использовано для контроля технических характеристик ударных механизмов. Стенд для измерения энергии удара и полезной мощности бетоноломов содержит боек, связанный с ударным механизмом бетонолома, массивное основание и регистрирующий датчик давления. При этом в состав стенда также введены гидроцилиндр с поршнем, на который опирается боек, регулируемый предохранительный клапан, заправочный насос и гидробак, при этом полость гидроцилиндра через параллельно соединенные между собой регулируемый предохранительный клапан и заправочный насос соединена с гидробаком, а регистрирующий датчик давления подключен к полости гидроцилиндра и выполнен импульсным, и в процессе регистрации прямоугольных импульсов давления при проведении серии ударов обеспечивает возможность одновременной регистрации количества ударов и общего времени прохождения поршнем рабочего хода поршня от верхнего до нижнего упора. Данное изобретение направлено на повышение достоверности результатов испытаний и повышение точности измерения энергии удара и полезной мощности. 1 ил.
Изобретение относится к области гидромашиностроения и может быть использовано для измерения, сертификации, контроля технических характеристик и испытаний ударных механизмов, в частности ручных, гидро-, пневмо-, электро- и бензоинструментов ударного и ударно-вращательного действия (молотков, бетоноломов, перфораторов, ударных машин массой от 4 до 28 кг), а также гидромолотов экскаваторов 2-й, 3-й и 4-й размерных групп массой от 150 до 1500 кг.Известны стенды для испытаний, измерения энергии удара и полезной мощности механизмов ударного действия [1,2].Стенды содержат боек, связанный с ударным механизмом, массивное основание и регистрирующий датчик. Они могут обеспечивать ручной прижим ударного механизма к основанию для включения в работу [1] либо механический прижим за счет соответствующих прижимных пружин [2], которые целесообразно применять при длительных ресурсных испытаниях ударных механизмов.Из известных наиболее близким по технической сущности (прототипом) является динамический стенд, описанный в статье [1].Он состоит из пластинчатой пружинной рессоры, закрепленной с двух сторон в опорах на массивном основании. На верхней и нижней поверхностях рессоры наклеены 4 регистрирующих тензодатчика, включенных в мостовую схему. При измерениях энергии удара и выходной мощности включают бетонолом в работу и регистрируют деформацию (ударный изгиб) рессоры с помощью тензодатчиков. При этом в каждом ударе кинетическая энергия бойка преобразуется в потенциальную энергию прогнувшейся рессоры, регистрируемую тензодатчиками, и далее возвращается бойку с обратным знаком практически без потерь.Способ заделки (защемления) рессоры в опорах основания (через резиновые или медные прокладки, сталь по стали и др.) фактически определяет диссипативную (демпфирующую) составляющую при ударе, которая изменяется в связи с износом заделки от одной серии ударов к другой, что влияет на замеряемые параметры.Описанный стенд имитирует упругое (непластичное) неразрушающее взаимодействие бойка и основания, однако основной режим работы молотков и бетоноломов - это как раз ударное разрушение бетона, кирпичной кладки, пробитие стального листа и т.д.При этом вся полезная энергия и мощность расходится на необратимое внедрение бойка (пики) в разрушаемый материал, что невозможно реализовать в прототипе.Доминирование упругой составляющей рессорного стенда при ударе, изменение диссипативной составляющей от одной серии ударов к другой, в связи с износом заделки опор, снижает точность измерения энергии удара и полезной мощности, что является основным недостатком прототипа.Изобретение направлено на повышение достоверности результатов испытаний ручных ударных инструментов и навесных гидромолотов строительно-дорожных машин и повышение точности измерения энергии удара и полезной мощности.Указанный технический результат достигается тем, что в испытательный стенд, содержащий боек, связанный с ударным механизмом бетонолома, массивное основание и регистрирующий датчик, введены в гидроцилиндр с поршнем, на который опирается боек, предохранительный клапан, заправочный насос и гидробак, при этом полость гидроцилиндра через параллельно соединенные между собой предохранительный клапан и заправочный насос соединена с гидробаком, а регистрирующий датчик подключен к полости гидроцилиндра.Изобретение поясняется на примере его выполнения, иллюстрируемом чертежом, на котором показана принципиальная гидрокинематическая схема испытательного стенда.Стенд содержит боек 1, связанный с ударным механизмом бетонолома 2, опирающийся на поршень 3, расположенный внутри гидроцилиндра 4. Гидроцилиндр 4 установлен на массивное основание 5. С полостью гидроцилиндра 4 связан регистрирующий датчик (датчик давления) 6, регулируемый предохранительный клапан 7 и заправочный насос 8 с обратным клапаном 9, соединенные с гидробаком 10.Работает стенд следующим образом. Заправочным ручным насосом 8 рабочую жидкость перед серией ударов подают под поршень 3 в гидроцилиндр 4. Поршень 3 перемещается в верхнее положение, после чего включают бетонолом в работу. Боек 1 наносит серию ударов по поршню, который перемещается в цилиндре 4 вниз, при этом регистрируются импульсы давления датчиком 6. Перемещение поршня 4 сопровождается ручным перемещением бетонолома 2. При каждом ударе кинетическая энергия Е ударника бетонолома 2 преобразуется в работу по перемещению бойка 1 и поршня 3 на расстояние









Формула изобретения
Стенд для измерения энергии удара и полезной мощности бетоноломов, содержащий боек, связанный с ударным механизмом бетонолома, массивное основание, регистрирующий датчик давления, отличающийся тем, что в состав стенда введены гидроцилиндр с поршнем, на который опирается боек, регулируемый предохранительный клапан, заправочный насос и гидробак, при этом полость гидроцилиндра через параллельно соединенные между собой регулируемый предохранительный клапан и заправочный насос соединена с гидробаком, а регистрирующий датчик давления подключен к полости гидроцилиндра и выполнен импульсным, и в процессе регистрации прямоугольных импульсов давления при проведении серии ударов обеспечивает возможность одновременной регистрации количества ударов и общего времени прохождения поршнем рабочего хода поршня от верхнего до нижнего упора.РИСУНКИ
Рисунок 1