Устройство для деления числа в модулярном коде на основание системы счисления
Изобретение относится к области автоматики и вычислительной техники и может быть использовано в вычислительных структурах, функционирующих в модулярной системе счисления (МСС). Техническим результатом является повышение быстродействия выполнения операции деления числа в модулярном коде на одно из основании МСС. Технический результат достигается за счет того, что устройство содержит регистр модулярного кода числа (N - число оснований МСС), преобразователь модулярного кода в полиадический код, (N-1) устройство отображения и сумматор (N-1) чисел по модулю mN (mN - N-ое основание модулярной системы счисления, на которое производится деление). 3 ил.
Изобретение относится к области автоматики и вычислительной техники и может быть использовано в цифровых вычислительных устройствах для выполнения операции деления числа в модулярном коде на одно из оснований модулярной системы счисления (МСС).Известно устройство (аналог) (авт. св. СССР №1683013А1, МКИ G 06 F 7/72, Б.И. №37, 1991 г.), содержащее регистры делимого и делителя, регистр сдвига и вспомогательный регистр, блоки вычитания, умножения и сложения, параллельно-конвейерный формирователь интегральных характеристик модулярного кода, счетчик, элемент ИЛИ-НЕ, элемент задержки, регистр частного и элемент ИЛИ.Недостаток устройства - низкое быстродействие выполнения операции деления числа в МСС.Наиболее близким по технической сущности (прототипом к предлагаемому изобретению) является устройство (авт. св. СССР №1667066 А1, МКИ G 06 F 7/72, Б.И. №28, 1991 г.), содержащее блок элементов задержки, блок вычисления интервального индекса числа, элемент задержки, первый и второй регистры сдвига, регистр модулярного кода числа, блоки мультиплексоров, блоки хранения констант, блок управления, первый и второй блоки элементов ИЛИ.Недостаток прототипа - низкое быстродействие выполнения операции деления числа в МСС вследствие ограниченного быстродействия полупроводниковых логических элементов, из которых состоит данное устройство.Цель изобретения состоит в повышении производительности перспективных образцов вычислительной техники.Технический результат выражается в повышении быстродействия выполнения операции деления числа в модулярном коде на одно из оснований МСС.Поставленная цель достигается тем, что в устройство, содержащее регистр модулярного кода числа, N входов которого являются входами устройства (N - число оснований МСС), введены (N-1) табличных вычислителей, преобразователь модулярного кода в полиадический код, (N-1) устройств отображения и сумматор (N-1) чисел по модулю mN (mN - основание, на которое осуществляется деление числа в МСС), причем i-ый выход регистра модулярного кода числа
соединен с первым входом i-го табличного вычислителя, ко второму входу которого подключен N-ый выход регистра модулярного кода числа, выход i-го табличного вычислителя является i-ым выходом устройства и соединен с i-ым входом преобразователя модулярного кода в полиадический код, i-ый выход которого через i-ое устройство отображения соединен с i-ым входом сумматора (N-1) чисел по модулю mN, выход которого является N-ым выходом устройства.В основу функционирования предлагаемого устройства положены следующие принципы.Признаком деления нацело числа А, представленного в модулярном коде A=(
1,
2,... ,
N)
mi - i-oe основание МСС), на основание mN является равенство нулю сравнения
N=AmodmN
0 [1, с.146-147]. Если
N
0, то можно рассматривать деление числа А-
N=А-AmodmN, что эквивалентно округлению результата деления до целого значения в меньшую сторону. Значения остатков
i модулярного кода частного (А-
N)/mN по основаниям
определяются [1, с.147] делением их на число (mN)modmi, т.е.
где
iN - заранее определяемая константа, которая находится из решения сравнения (
iNmN)modmi
1. Данная операция легко реализуется в табличных вычислителях.Основная проблема состоит в раскрытии неопределенности вида 0/0 при делении остатка по N-ому основанию на mN. Данная неопределенность раскрывается следующим образом. Известно [1, с.12-13], что число А находится в диапазоне 0
A
M, где
Тогда число (A-
N)/mN находится в диапазоне
С другой стороны, число (А-
N)/mN может быть представлено в полиадическом позиционном коде [2, с.21-22]
где
- разряды полиадического кода
Разряды полиадического кода определяются по остаткам модулярного кода
i в соответствии с выражениями [2, с.21-22]
где
k,r - обратная мультипликативная величина, определяемая из решения сравнения (
r,k·mk)modmr
1; dr=mr-1; 
Из анализа выражения (3) следует, что если
N=0, а
то максимальное значение числа в этом случае будет равно М/mN-1. Таким образом, из (2), (3) и (4) следует, что в полиадическом коде числа (A-
N)/mN старший разряд
N=0, а для определения разрядов
необходимо знать только остатки результата деления числа (А-
N)/mN по основаниям m1, m2,... , mN-1, которые могут быть вычислены в табличных вычислителях.На основании изложенного выше получаем
Следовательно, расчет
N состоит в определении разрядов
полиадического кода числа, код которого в МСС равен (
1,
2,... ,
N-1), и суммировании по модулю mN этих разрядов, умноженных на соответствующие весовые коэффициенты, по формуле (5).Таким образом, сущность изобретения заключается в определении в (N-1) табличных вычислителях по основаниям
остатков
j результата деления на основание mN числа А, расчете остатка
N путем получения из остатков
j разрядов полиадического кода
j, в преобразователе модулярного кода и сложении этих разрядов с учетом весовых коэффициентов в сумматоре (N-1) чисел по модулю mN.Для получения
N представим значения остатков (
1,
2,... ,
N-1) числа (А-
N)/mN фазой гармонического сигнала. Суммируя фазы этого сигнала в соответствии с алгоритмом преобразования чисел из модулярного кода в полиадический (4), определяем разряды полиадического кода путем измерения суммарного набега фазы и затем, повторно кодируя фазы гармонического сигнала в соответствии со значениями разрядов полученного полиадического кода, определяем остаток
N, который будет прямо пропорционален суммарному набегу фазы.Структурная схема устройства, реализующего изложенный алгоритм, представлена на фиг.1.В данной схеме 1.1-1.N - входы устройства (N - число оснований МСС), 2 - регистр модулярного кода числа, 3.1-3.(N-1) - табличные вычислители, 4 - преобразователь модулярного кода в полиадический код, 5.1-5.(N-1) - устройства отображения, 6 - сумматор (N-1) чисел по модулю N, 7.1-7.N - выходы устройства.Входы устройства 1.1-1.N соединены с информационными входами Bx1-BxN регистра модулярного кода числа 2. Выходы 1-(N-1) регистра модулярного кода числа подключены ко входам 1 табличных вычислителей 3.1-3.(N-1) соответственно, а выход N регистра модулярного кода числа 2 соединен со входами 2 табличных вычислителей 3.1-3.(N-1), выходы которых подключены ко входам 1-(N-1) преобразователя модулярного кода в полиадический код 4, выходы 1-(N-1) которого через устройства отображения 5.1-5.(N-1) подключены ко входам 1-(N-1) сумматора по модулю mN 6, выход которого является выходом устройства 7.N, а выходы табличных вычислителей 3.1-3.(N-1), соответственно, являются выходами 7.1-7.(N-1) устройства.Реализация основных узлов устройства представлена на фиг.2 и 3.На фиг.2 представлена структурная схема преобразователя модулярного кода в полиадический код 4, где
– входы преобразователя, 8 - генератор гармонического сигнала, 9.1.1-9.(N-1).N - устройства отображения, 10.1.1-10.(N-1).N - управляемые фазовращатели, 11.1-11.(N-1) - измерители сдвига фазы, Вых к - выходы преобразователя.На фиг.3 представлена структурная схема сумматора по модулю N 6, где
- входы устройства, 12 - генератор гармонического сигнала, 11.1-11.N - управляемые фазовращатели, 14.1-14.(mN-1) – линии задержки на время
(где
- частота генератора гармонического сигнала), 15.1-15.mN - аналоговые перемножители, 16.1-16.mN - интеграторы, 17 - схема выбора максимума.Рассмотрим работу устройства.Остатки (
1,
2,... ,
N) числа А в МСС подаются на информационные входы 1.1-1.N и записываются в регистр модулярного кода числа 2. С выходов 1-(N-1) регистра модулярного кода числа остатки
в унитарном коде поступают на первые входы табличных вычислителей 3.1-3.(N-1), на вторые входы которых поступает сигнал с выхода N регистра модулярного кода числа 2. В j-ых табличных вычислителях
определяются остатки
j модулярного кода частного (А-
N)/mN по основаниям
Полученные остатки поступают на выходы устройства 7.j и на соответствующие входы преобразователя модулярного кода числа в полиадический код 4, где сигнал со входа 1 следует непосредственно на выход 1 преобразователя и на входы устройств отображения 9.1.2-9.(N-1).2, а со входов 2-(N-1) на устройства отображения 9.1.1-9.(N-1).1. В устройствах отображения 9.j.1
в соответствии с формулой (4) осуществляется унарное преобразование
а в устройствах отображения 9.j.2 - унарное преобразование
Сигналы с выходов устройств отображения 9.j.1 и 9.j.2 поступают на Вх2 управляемых фазовращателей 10.1.j и 10.2.j
соответственно, где устанавливаются набеги фазы, пропорциональные
и
Гармонический сигнал с выхода генератора 8 будет иметь на выходе УФ 10.1.2 суммарный набег фазы, прямо пропорциональный значению разряда полиадического кода
2. В измерителе сдвига фазы 11.1 эта фаза сравнивается с фазой опорного сигнала с выхода ГГС 8, и на выходе формируется унитарный код разряда
2=((
2
2,1)modm2+(d2
1
2,1)modm2)modm2,который поступает на Вых2 преобразователя 4 и на устройства отображения 9.2.3-9.(N-1).3. Аналогично формируются разряды унитарного кода
3-
(N-1), которые поступают на Bых3-(N-1) преобразователя 4 соответственно.Сформированный полиадический код, через устройства отображения 5.j
осуществляющих соответственно унарные преобразования
1
(
1)modmN,
2
(
2·m1)modmN,...
N-1
(
N-1·m1m2...mN-2)modmN,поступает на Bx1-Bx(N-1) сумматора (N-1) чисел по модулю mN 6. В сумматоре 6 в управляемых фазовращателях 13.j
устанавливаются соответствующие сдвиги фазы
j: 
После прохождения гармонического сигнала с выхода генератора 12 на выходе управляемого фазовращателя 13.(N-1) будет суммарный набег фазы
На выходах линий задержки 14.1
сдвиг фазы гармонического сигнала, соответственно, будет равен 
В результате перемножения в перемножителях 15.1-15.mN гармонических сигналов с выхода управляемого фазовращателя 13.(N-1) и с выходов линий задержки 14.l и последующего интегрирования результатов произведения в интеграторах 16.1-16mN образуются постоянные напряжения разного уровня. При этом максимальное напряжение будет на выходе интегратора 75.Z, где Z=
N+1. В схеме выбора максимума 17 определяется интегратор с наибольшим откликом и результат
N в унитарном коде поступает на выход сумматора 6, и, соответственно, на выход 7.N устройства.Сравним быстродействие прототипа и предлагаемого устройства.В прототипе время получения остатка равноТПР=(]log2N[+2)·tMT,где ]
[ - символ округления в большую сторону; tМТ - длительность модульного такта устройства, которая не может быть меньше длительности переключения логического элемента tЛЭ
10-10С [3, с. 173]. Реально tМТ на порядок больше tЛЭ, то есть tМТ
10-9С.Таким образом, ТПР
10-9·(]log2N[+2), C.В предлагаемом устройстве время вычисления модулярного кода частного ТПУ равно сумме времени расчета
j в табличных вычислителях - tТВ, времени получения разрядов полиадического кода в преобразователе 4 - tМП и времени суммирования (N-1) чисел в сумматоре 6 - t
. Время получения
j в табличных вычислителях примерно равно времени переключения логического элемента: tTB
10-10C. Оценки времени tМП и t
, полученные в [4, с.8-11, 5, с.40-44], описываются формуламиt
(N+3)T+10-11, C;tМП=TN+(N-1)·3T+2N·
K, C,где Т - период частоты генератора гармонического сигнала;
К - время коммутации управляемых фазовращателей.Например, при N=6 и Т=
К=10-11C получаемТПР=10-9(3+2)=5·10-9С.ТПУ=tТВ+
МВ+t
=5,3·10-10C.Пример: Пусть N=3; m1=5; m2=7; m3=3. Тогда
1,3=2;
l,2=3;
2,3=5; d2=6.Найдем результат деления числа А=47=(2,5,2) на m3=3.В табличных вычислителях 3.1 и 3.2 по формуле (1) определяются
1=(
1,3(
1-(
2)modm1))modm1=(2·(2-2))mod5=0;
2=(
2,3(
2-(
3)modm2))modm2=(5·(5-2))mod7=1.Данные числа поступают соответственно на выходы 7.1 и 7.2 устройства и на входы 1 и 2 преобразователя 4. В этом преобразователе
1=
1=0, а
2 рассчитывается по формуле (4)
В устройствах отображения 5.1 и 5.2 осуществляется преобразование
1
(
1)mod3=0 и
2
(
2·5)mod3=0. Данные числа складываются в сумматоре 6:
3=(0+0)mod3=0.Результат сложения поступает на выход 7.3 устройства.Таким образом, модулярный код частного (А-
N)/mN=(0,1,0).Проверка. (47-2)/3=15=(0,1,0).Источники информации1. Акушский И.Я., Юдицкий Д.И. Машинная арифметика в остаточных классах. - М.: Сов. радио, 1968. 440 с.2. Долгов А.И. Диагностика устройств, функционирующих в системе остаточных классов. - М.: Радио и связь, 1982, 64 с.3. Акаев А.А., Майоров С.А. Оптические методы обработки информации. - М.: Высш. шк., 1988. - 273 с.4. Овчаренко Л.А. Вариант реализации основных операций в модулярном арифметическом устройстве. - Телекоммуникации, 2001. №3, 8-11 с.5. Овчаренко Л.А. Когерентный преобразователь модулярного кода.// Телекоммуникации, 2001, №6, 40-44 с.Формула изобретения
Устройство для деления числа в модулярном коде на основание системы счисления, содержащее регистр модулярного кода числа, N входов которого являются входами устройства (N - число оснований модулярной системы счисления МСС), отличающееся тем, что в него введены (N-1) табличных вычислителей, преобразователь модулярного кода в полиадический код, (N-1) устройств отображения и сумматор (N-1) чисел по модулю mN (mN - основание, на которое осуществляется деление числа в МСС), причем i-ый выход регистра модулярного кода числа
соединен с первым входом i-го табличного вычислителя, ко второму входу которого подключен N-ый выход регистра модуляторного кода числа, выход i-го табличного вычислителя является i-ым выходом устройства и соединен с i-ым входом преобразователя модулярного кода в полиадический код, i-ый выход которого через i-ое устройство отображения соединен с i-ым входом сумматора (N-1) чисел по модулю mN, выход которого является N-ым выходом устройства.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3
Похожие патенты:
Устройство для сложения n чисел по модулю p // 2220441
Изобретение относится к области автоматики и вычислительной техники и может быть использовано в вычислительных структурах, функционирующих в модулярной системе счисления
Изобретение относится к вычислительной технике и предназначено для использования в цифровых вычислительных устройствах, а также в устройствах для формирования конечных полей
Устройство для сложения n чисел по модулю p // 2188448
Изобретение относится к области автоматики и вычислительной техники и может быть использовано в вычислительных структурах, функционирующих в модулярной системе счисления
Арифметическое устройство по модулю // 2157560
Изобретение относится к автоматике и вычислительной технике и может быть использовано в вычислительных структурах, функционирующих в модулярной системе счисления
Изобретение относится к области автоматики и вычислительной техники и может быть использовано в вычислительных машинах и устройствах, функционирующих в системе остаточных классов
Устройство для умножения по модулю семь // 2149442
Изобретение относится к вычислительной технике и может быть использовано для построения систем передачи и обработки дискретной информации
Изобретение относится к области автоматики и вычислительной техники и может быть использовано в вычислительных машинах и устройствах, функционирующих в многоступенчатой системе остаточных классов
Устройство для умножения чисел по модулю // 2143723
Изобретение относится к автоматике и вычислительной технике и может быть использовано в вычислительных машинах и устройствах, функционирующих в системе остаточных классов
Устройство для умножения по модулю семь // 2143722
Изобретение относится к вычислительной техникe и может быть использовано для построения систем передачи и переработки дискретной информации
Устройство для умножения чисел по модулю // 2137181
Изобретение относится к области автоматики и вычислительной техники и может быть использовано в вычислительных машинах и устройствах, функционирующих в системе остаточных классов
Изобретение относится к вычислительной технике и предназначено для использования в вычислительных устройствах, функционирующих в системе остаточных классов (СОК), а также технике связи для передачи информации кодами СОК
Изобретение относится к вычислительной технике, предназначено для деления числа в модулярной системе счисления (МСС) на одно из ее оснований и может быть использовано в цифровых вычислительных устройствах
Изобретение относится к вычислительной технике, предназначено для масштабирования результата произведения целых чисел, представленных в модулярном коде, и может быть использовано в цифровых вычислительных устройствах
Устройство для сложения n чисел по модулю p // 2263948
Изобретение относится к области автоматики и вычислительной техники и может быть использовано в вычислительных структурах, функционирующих в модулярной системе счисления
Устройство для вычисления сумм парных произведений в полиномиальной системе классов вычетов // 2270475
Изобретение относится к вычислительной технике и может быть использовано в процессорах обработки сигналов, в цифровых фильтрах
Устройство для сложения n чисел по модулю p // 2270476
Изобретение относится к области автоматики и вычислительной техники и может быть использовано в вычислительных структурах, функционирующих в модулярной системе счисления
Нейронная сеть для округления и масштабирования чисел, представленных в системе остаточных классов // 2271570
Изобретение относится к вычислительной техники и, в частности, к модулярным нейрокомпьютерным средствам и предназначено для выполнения операций округления и масштабирования над числами, представленными в системе остаточных классах (СОК)
Изобретение относится к криптографическому способу и чип-карте для шифрования информации и к методам создания электронных подписей
Изобретение относится к вычислительной технике и предназначено для использования в вычислительных устройствах, функционирующих в системе остаточных классов (СОК), а также технике связи для передачи информации кодами СОК
Умножитель на два по модулю // 2299460
Изобретение относится к вычислительной технике и может быть использовано в цифровых вычислительных устройствах, а также в устройствах для формирования элементов конечных полей




















