Способ широтно-импульсной модуляции для последовательно включенных преобразователей
Предложен способ широтно-импульсной модуляции для включенных последовательно двухточечных или трехточечных преобразователей, в котором импульсы напряжения (U1) первого преобразователя с первым коэффициентом модуляции (m1) и импульсы напряжения (U2) второго преобразователя со вторым коэффициентом модуляции (m2) суммируют таким образом, что образуется один общий, безынтервальный импульс напряжения (U1+U2). Суммарные импульсы напряжения (U1+U2) симметричны относительно последующих суммарных импульсов напряжения. Также сформированные импульсные последовательности оптимизированы с учетом появляющихся высших гармоник. Технический результат - минимизация влияния нагрузки от высших гармоник. 9 з.п. ф-лы, 8 ил.
Изобретение относится к способу широтно-импульсной модуляции для последовательно включенных преобразователей, осуществляемому согласно дополнительной части пункта 1 формулы изобретения. Например, изобретение может быть применено, но без ограничения указанными случаями, для двухточечных или трехточечных преобразователей в системе привода для рельсовых транспортных средств.Из патента ФРГ DE 19614627 A1 известна система преобразователей электроэнергии для питания по меньшей мере одного потребителя от высоковольтной сети, причем система преобразователей содержит множество подсистем преобразователей, и каждая такая система подсистема состоит, по меньшей мере, из одного входного преобразователя энергии, промежуточной цепи напряжения и одного инвертора. Существенным отличием является то, что эта система преобразователей реализована без включенного вверх по технологической цепочке промежуточного или включенного вниз по технологической цепочке трансформатора, что приводит к уменьшению массы, объема и стоимости.Когда используется вышеописанная система преобразователей энергии в качестве приводной системы для рельсовых транспортных средств, то возникающие в контактном проводе гармоники тока определяются посредством способа широтно-импульсной модуляции и главным входным индуктором. Так как на приводные мощности приводных двигателей среди прочих условий влияют еще устройства регулирования скольжения, то нельзя исходить из того, что приводные мощности приводных двигателей равны при всех режимах работы. Однако разные приводные мощности вызывают различный уровень возбуждения разных преобразователей мощности (разные коэффициенты модуляции), что может привести к возникновению помех при магистральной подаче электроэнергии. Поэтому применяемый способ широтно-импульсной модуляции имеет большое значение для минимизации влияния нагрузки от высших гармоник.В основу изобретения положена задача создания способа широтно-импульсной модуляции такого типа, который пригоден как для двухточечных преобразователей, так и для трехточечных преобразователей, который допускал бы только очень малые помехи в магистральной подаче электроэнергии последовательно включенных преобразователях, работающих в режиме с разными коэффициентами модуляции.Поставленная задача решается признаками, указанными в отличительной части 1 пункта формулы изобретения, в сочетании с признаками, указанными в отличительной части 1 пункта.Достигаемые благодаря изобретению преимущества заключаются, в частности, в том, что формы импульсов, получаемые при различных режимах работы с разным уровнем возбуждения (разные коэффициенты модуляции) отдельных, подключенных к различным нагрузкам преобразователей мощности, оптимизируют с учетом возникающих высших гармоник.Состоящая из трех последовательно включенных трехточечных преобразователей подсистема генерирует высшие гармоники при двенадцатитактовой частоте коммутации полупроводника. Фазовый угол этих высших гармоник зависит от уровня возбуждения, следовательно может произойти то, что в худшем случае фазовые углы первых высших гармоник этих подсистем будут смещены на угол 180°. В этом случае в общей системе возникает высшая гармоника двойной амплитуды, по сравнению с одной подсистемой. Объединение импульсов двух подсистем без межимпульсного интервала импульсов, согласно изобретению, заметно снижает максимальную амплитуду при двенадцатитактовой частоте коммутации.Уменьшение генерации высших гармоник обеспечивает возможность уменьшения размера главного входного индуктора, приводит к снижению себестоимости при его производстве, к экономии его массы и занимаемого им объема.Преимущество применения способа широтно-импульсной модуляции в силовых преобразователях для рельсовых транспортных средств заключается в том, что на сигнальные установки и на установки контроля протяженности свободного пути, находящиеся непосредственно вблизи от контактного провода, высшие гармоники не оказывают негативного влияния.Ниже изобретение более подробно описано на примерах его выполнения со ссылками на чертежи, на которыхФиг.1 изображает компоновку схемы, имеющей множество последовательно подключенных со стороны переменного тока трехточечных преобразователей;Фиг.2 - принципиальная электрическая схема отдельного двухточечного преобразователя;Фиг.3 - принципиальная электрическая схема отдельного трехточечного преобразователя;Фиг.4 - иллюстрация широтно-импульсной модуляции при использовании двухточечного преобразователя;Фиг.5 - иллюстрация широтно-импульсной модуляции при использовании трехточечного преобразователя;Фиг.6 и 7 - иллюстрации формирования импульсов напряжения при смещении несущего сигнала;Фиг.8 - иллюстрация формирования импульсов напряжения при смещении двух несущих сигналов.На Фиг.1 показана схема, имеющая множество последовательно включенных со стороны переменного тока трехточечных преобразователей. Между системой 1 “контактный провод/токоприемник” с подключенным за ней главным входным индуктором 3 и системой 2 “колесо-рельс” включено последовательно несколько трехточечных преобразователей DPU1, DPU2...DPU6. В общем, dpun соответствует любому подключенному последовательно со стороны переменного тока трехточечному преобразователю (N=1, 2, 3, 4, 5, 6...). Каждый из трехточечных преобразователей может быть шунтирован посредством выключателя А1, А2...А6 (общее число AN).К системе 1 “контактный провод/токоприемник” приложено переменное напряжение, в то время как система 2 “колесо-рельс” заземлена, т.е. находится под потенциалом Земли. Со стороны постоянного напряжения каждый точечный преобразователь питает промежуточную цепь, которая в каждом случае имеет два промежуточных конденсатора C1.1, C1.2, C2.1, C2.2...С6.1, С6.2 (в общем CN.1, СN.2). К каждой из этих промежуточных цепей присоединен свой собственный инвентор WR1, WR2...WR6 (в общем WRN). Каждые три инвентора предназначены для питания одного включенного по трехзвездочной схеме двигателя, так что первый включенный по трехзвездочной схеме двигатель M1 подключен к трем инвенторам WR1, WR2, WR3, а второй такой двигатель М2 - к трем другим инвенторам WR4, WR5, WR6.Для схемы, выполненной согласно Фиг.1, вместо шести трехточечных преобразователей DPU1, DPU2...DPU6 могут быть использованы двенадцать двухточечных преобразователей ZPU1-ZPU12. В этом случае промежуточные конденсаторы С1.1, C1.2,...Cn.1, Cn.2 в цепи могут быть заменены промежуточными конденсаторами C1...СN. К каждому двухточечному преобразователю подсоединен один инвентор. Каждый из этих инвенторов питает через работающий с высокой частотой (например 500 Гц) трансформатор выпрямитель, при этом каждые шесть выпрямителей питают общую промежуточную цепь. К каждой из этих двух промежуточных цепей через инвентор подключена нагрузка (двигатель).На Фиг.2 показана принципиальная электрическая схема отдельного двухточечного преобразователя ZPUN. Каждый двухточечный преобразователь имеет два электронных переключателя S’N.1, S’N.2 (каждый переключатель имеет два положения коммутации и реализован двумя силовыми преобразовательными вентилями), посредством которых общеизвестным образом на оба контакта конденсатора CN промежуточной цепи, связанного с каждым из двухточечных преобразователей, может подаваться напряжение. Импульсные напряжения электронных переключателей обозначены V1, V2, кроме того, показано напряжение U4QS=V1-V2.На Фиг.3 показана принципиальная электрическая схема отдельного трехточечного преобразователя. Каждый трехточечный преобразователь PDUN имеет два электронных переключателя SN.1, SN.2 (каждый переключатель имеет три положения коммутации и реализуется четырьмя силовыми преобразовательными вентилями), посредством которых напряжение может общеизвестным образом подаваться на оба внешние контакта и/или на общий контакт из двух последовательно соединенных промежуточных схемных конденсаторов CN.1, СN.2, предназначенных для каждого трехточечного переключателя. Импульсы напряжения электронных переключателей обозначены как V1, V2, кроме того, показано напряжение U4QS=V1-V2.На Фиг.4 изображена известная широтно-импульсная модуляция при применении двухточечного преобразователя. В общих чертах представлены несущие сигналы UH11 и UH12 для обоих электронных переключателей. Благодаря образованию точек пересечения несущих сигналов с управляющим напряжением ST, заданным в соответствии с коэффициентами модуляции, ограничивают начало и конец импульсов напряжения V1 и V2.На Фиг.5 показана известная широтно-импульсная модуляция при применении трехточечного преобразователя, которая может быть получена из двух смещенных широтно-импульсных модуляций двухточечного преобразователя. Так как с точки зрения широтно-импульсной модуляции два последовательно включенных двухточечных преобразователя при соответствующем смещении подачи таковых импульсов ведут себя как один трехточечный преобразователь, в соответствии с этим получают четыре несущих сигнала UH11, UH12, UH13 и UH14 для двух электронных переключателей, благодаря образованию точек пересечения несущих сигналов с управляющим напряжением ST ограничивают начало и конец импульсов V1 и V2 напряжения. Падающий и нарастающий фронты импульсов находятся на том же самом месте, что и у двухточечного преобразователя, однако импульсов появляется в два раза больше.Импульсные последовательности электронных переключателей реализуют предпочтительно общеизвестным методом естественной выборки, при этом осуществляют смещенную подачу таковых импульсов отдельных преобразователей, чтобы достигнуть оптимального режима работы всего устройства при генерации как можно меньших высших гармоник. В этом случае подразумевается, что три питающих двигатель M1 инвентора WR1, WR2, WR3 и шесть двухточечных преобразователей (первая подсистема) в каждом случае управляются в режиме с одинаковым коэффициентом m1 модуляции. А три питающих двигатель М2 инвентора WR4, WR5, WR6 и шесть двухточечных преобразователей (вторая подсистема, обе подсистемы подключены последовательно и образуют общую систему) в каждом случае управляются в режиме с одинаковым коэффициентом m2 модуляции. Оба коэффициента модуляции могут изменяться в зависимости от разных режимов работы присоединенных нагрузок.Коэффициент модуляции, равный 1, соответствует 100%-ному уровню возбуждения двигателя (максимальный уровень возбуждения), коэффициент модуляции, равный 0,5, соответствует 50%-ному уровню возбуждения двигателя. Коэффициент модуляции, равный 0,1, соответствует 10%-ному уровню возбуждения, а коэффициент модуляции, равный 0,2, соответствует 20%-ному уровню возбуждения генератора и так далее.Задача описываемого далее способа широтно-импульсной модуляции, согласно изобретению, состоит в том, чтобы соединить друг с другом два импульса первой и второй подсистем в один безынтервальный импульс. Широтно-импульсные модуляции каждой подсистемы работают со смещением. Как это уже было описано выше со ссылкой на трехточечный преобразователь, у них сохраняются нарастающий и падающий фронты, а также ширина импульсов, однако удваивается число импульсов за период по сравнению двухточечным преобразователем. По этой причине нижеследующие разъяснения, относящиеся главным образом к способу широтно-импульсной модуляции применительно к двухточечному преобразователю, могут быть просто применены для трехточечного преобразователя.На Фиг.6 иллюстрируется формирование импульсов напряжения с одним несущим сигналом, сдвинутым в соответствии с настоящим изобретением на угол

























Формула изобретения
1. Способ широтно-импульсной модуляции для преобразователей, подключенных последовательно к сети источника питания переменного тока, отличающийся тем, что импульсы напряжения (U1) первого преобразователя, имеющего первый коэффициент (m1) модуляции, и импульсы напряжения (U2), полученные от сетевого источника питания посредством второго преобразователя, имеющего второй коэффициент (m2) модуляции, суммируют с образованием одного общего безынтервального импульса напряжения (U1+U2).2. Способ широтно-импульсной модуляции по п.1, отличающийся тем, что при получении широтно-импульсной модуляции посредством естественной выборки несущие сигналы первого преобразователя, имеющего коэффициент (m1) модуляции, сдвигают относительно остающихся неизменными несущих сигналов второго преобразователя, имеющего коэффициент (m2) модуляции, на угол































РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6, Рисунок 7, Рисунок 8
Похожие патенты:
Изобретение относится к области систем преобразования силового напряжения и может быть использовано, например, в устройствах питания электроприводов переменного тока и электроприводов на базе бесконтактных двигателей, а также в устройствах, предназначенных для преобразования одного вида напряжения в другой либо кондиционирования напряжения
Изобретение относится к области электротехники и может быть использовано для питания потребителей электроэнергии (электроинструментов, осветительных приборов и т
Регулятор трехфазного напряжения // 2122274
Изобретение относится к электротехнике, в частности к преобразовательной технике, и может найти применение, например, для регулирования напряжения преобразовательных трансформаторов
Изобретение относится к электротехнике и может быть использовано для регулирования напряжения синусоидальной формы
Изобретение относится к области тиристорного электропривода, требующего регулирования скорости и угла поворота привода, с m-фазным двигателем переменного тока с четным числом фаз и 2m-тиристорным коммутатором
Изобретение относится к области регулируемого электропривода переменного тока с нечетным числом фаз статора двигателя m
Изобретение относится к преобразовательной технике
Изобретение относится к устройству подавления радиопомех в электронном регуляторе мощности (РМ)
Ограничитель напряжения сетей освещения // 2221266
Изобретение относится к преобразовательной технике, предназначено для поддержания заданной уставки действующего напряжения промышленных сетей освещения и может быть использовано для регулирования нагревательных устройств
Изобретение относится к стабилизированным источникам высокого напряжения и может быть использовано для питания трубок рентгеновских аппаратов, кинескопов телевизоров, множительных копировальных аппаратов фотоэлектронных умножителей и других высоковольтных потребителей
Схема питания с переключаемым режимом работы // 2188495
Изобретение относится к схеме питания с переключаемым режимом работы, содержащей как минимум два источника питания переключаемого режима, которые содержат трансформатор и которые имеют выход, соединенные параллельно
Изобретение относится к электротехнике, в частности к преобразователям напряжения и тока электротехнологичских установок, и может найти применение для бесконтактного регулирования напряжения и тока в первичных обмотках трансформаторов питания выпрямителей, печей сопротивления, сварочных, дуговых и электролизных установок, зарядных устройств, емкостных накопителей энергии и ряда других потребителей
Изобретение относится к электротехнике, в частности к импульсным системам автоматического регулирования, и предназначено для использования в электроприводах переменного тока с ключевыми преобразователями
Фильтр-стабилизатор переменного напряжения // 2094935
Устройство для проверки токовой защиты // 2093847
Изобретение относится к преобразовательной технике, а именно к преобразователям (инверторам) напряжения постоянного тока в напряжение переменного тока для питания синхронных гистерезисных электродвигателей (СГД) гироскопических устройств
Изобретение относится к преобразовательной технике и может быть использовано для повышения энергетических показателей трехфазных регуляторов переменного напряжения