Изобретение относится к способу изготовления энергонезависимой полупроводниковой запоминающей ячейки (SZ) с отдельной ячейкой (ТF) с туннельным окном, причем туннельную область (TG) с использованием ячейки (ТF) с туннельным окном в качестве маски выполняют на позднем этапе туннельной имплантации (IТ). Технический результат: получение запоминающей ячейки с небольшой потребностью в площади и большим числом циклов программирования/стирания. 2 з.п.ф-лы, 6 ил.
Изобретение относится к способу изготовления энергонезависимой полупроводниковой запоминающей ячейки с отдельным туннельным окном и, в частности, к способу изготовления ячейки ЭППЗУ с небольшой потребностью в площади и большим числом циклов программирования/стирания.
Энергонезависимые полупроводниковые запоминающие ячейки с возможностью повторной записи приобретают в схемах с высокой степенью интеграции все большее значение, поскольку они, например, в чип-картах могут хранить изменяемые данные в течение длительного отрезка времени и без использования напряжения питания.
В зависимости от вида используемых энергонезависимых полупроводниковых запоминающих ячеек принципиально различают ЭППЗУ, ППЗУ и "быстрые" ППЗУ.
На фиг. 5 изображен разрез обычной ячейки SZ ЭППЗУ, которая состоит, в основном, из ячейки TF с туннельным окном и транзисторной запоминающей ячейки TZ. Согласно фиг.5, транзисторная запоминающая ячейка TZ состоит из относительно толстого и невосприимчивого к токам утечки слоя 3 затвора, расположенного на нем слоя 5 плавающего затвора, диэлектрического слоя 6 и слоя 7 управляющего электрода. Введенный в слой 5 плавающего затвора заряд определяет при этом поведение соответствующего полевого транзистора в режиме переключения, управление которым происходит через области 1 истока и стока и слой 7 управляющего электрода. Для ввода зарядов в слой 5 плавающего затвора запоминающая ячейка содержит ячейку TF с туннельным окном, которая, в основном, имеет ту же последовательность слоев, что и транзисторная запоминающая ячейка TZ, причем, однако, изолирующий слой между полупроводниковой подложкой 100 и слоем 5 плавающего затвора состоит из очень тонкого туннельного слоя 4.
При изготовлении обычной ячейки TZ ЭППЗУ сначала осуществляют ионную имплантацию в зоне ячейки TF с туннельным окном для образования гомогенной туннельной области 2'. Затем наносят изолирующий туннельный слой 4 или слой 3 затвора и слой 5 плавающего затвора, диэлектрический слой 6 и слой 7 управляющего электрода. В заключение путем дополнительной ионной имплантации (или нескольких) с использованием запоминающей ячейки SZ в качестве маски в полупроводниковой подложке 100 выполняют с самосовмещением области 1 истока и стока. Таким образом получают исключительно высококачественную энергонезависимую полупроводниковую запоминающую ячейку с возможностью повторной записи, которая обладает очень длительным сроком службы. Срок службы указывает при этом на число циклов программирования/стирания и у подобных обычных ЭППЗУ составляет, как правило, около 10
6 циклов.
Недостатком этих обычных ЭППЗУ является, однако, высокая потребность в площади для запоминающей ячейки SZ, поэтому она находит применение в схемах с высокой степенью интеграции лишь условно.
В противоположность этому запоминающие ячейки "быстрых" СППЗУ обладают чрезвычайно малой потребностью в площади. На фиг.6 изображен разрез обычной запоминающей ячейки "быстрого" СППЗУ, причем на полупроводниковую подложку 100 наносят туннельный оксидный слой 4, слой 5 плавающего затвора, диэлектрический слой 6 и слой 7 управляющего электрода. Для выполнения туннельной области в зоне TF' туннельного окна запоминающей ячейки "быстрого" СППЗУ с использованием штабелеобразной запоминающей ячейки в полупроводниковой подложке 100 выполняют с самосовмещением области имплантации. Затем с использованием запоминающей ячейки и дополнительных вспомогательных слоев 8 в полупроводниковой подложке 100 выполняют с самосовмещением области 1 истока и стока. У этой обычной запоминающей ячейки "быстрого" СППЗУ аналогичным образом, как и у описанной выше запоминающей ячейки ЭППЗУ, в слой 5 плавающего затвора в зоне TF' туннельного окна через туннельный слой 4 вводят заряд посредством, например, инжекции горячих носителей заряда и/или туннелирования по Фаулеру-Нордхайму. Введенные таким образом носители заряда определяют затем поведение зоны TZ' транзисторной ячейки в режиме переключения.
Несмотря на существенно меньшую потребность в площади этой обычной запоминающей ячейки "быстрого" СППЗУ, этот вид энергонезависимых запоминающих ячеек имеет один существенный недостаток, заключающийся в том, что их срок службы, т.е. число циклов программирования/стирания, существенно ниже, чем у обычной запоминающей ячейки ЭППЗУ на фиг.4. Как правило, срок службы этих запоминающих ячеек "быстрых" ППЗУ составляет около 10
3 циклов.
Другой недостаток этих обычных энергонезависимых запоминающих ячеек с возможностью повторной записи состоит в том, что они могут быть комбинированы в общей интегральной схеме лишь условно. Причиной этого является, в частности, то, что предварительно осуществленная по фиг.5 имплантация туннельной области 2' влияет на толщину выполненного затем туннельного слоя 4. Точнее говоря, при применении такого же процесса изготовления туннельный слой 4 для ячейки TF с туннельным окном на фиг. 5 будет иметь другую толщину, нежели в запоминающей ячейке "быстрого" ППЗУ на фиг.6. Далее область 2' имплантации на фиг.5 очень восприимчива к последующей термообработке, тогда как область 2 имплантации на фиг.6 выполняют только в относительно поздний момент времени в процессе изготовления. За счет этого для выполненных в такой же интегральной схеме запоминающих ячеек на фиг.4 и 5 возникают разные напряжения программирования/стирания.
Далее из US 5565371 известен способ изготовления энергонезависимой полупроводниковой запоминающей ячейки с отдельным туннельным окном, при котором программирование транзисторной запоминающей ячейки осуществляют посредством инжекции горячих носителей заряда, а стирание транзисторной запоминающей ячейки - через туннелирование по Фаулеру-Нордхайму. Недостатком при этом, однако, является высокая потребность в площади, а также выполнение множества нестандартных технологических процессов. Комбинация этого способа с обычными способами поэтому невозможна.
В основе изобретения лежит задача создания способа изготовления энергонезависимой полупроводниковой запоминающей ячейки с отдельным туннельным окном, который при использовании стандартных процессов позволил бы уменьшить потребность в площади и одновременно повысить срок службы.
Согласно изобретению, эта задача решается посредством мероприятий п.1 формулы.
В частности, за счет выполнения туннельных областей в активной области ячеек с туннельным окном после выполнения туннельного слоя можно создать энергонезависимую полупроводниковую запоминающую ячейку, которая в отношении своего срока службы, т.е. циклов программирования/стирания, равноценна обычной ячейке ЭППЗУ, однако существенно улучшена в отношении своей потребности в площади. Кроме того, изготовленную таким образом запоминающую ячейку можно без проблем реализовать в общей интегральной схеме с обычными запоминающими ячейками "быстрых" ППЗУ с использованием стандартных процессов. Рабочие напряжения (напряжения программирования, стирания и считывания) могут быть при этом такими же, что и для самых различных форм энергонезависимых полупроводниковых запоминающих ячеек.
Преимущественно туннельные области выполняют с самосовмещением с использованием, по меньшей мере, одного слоя ячейки с туннельным окном посредством имплантации. В частности, у схем с высокой степенью интеграции с размерами структур

1 мкм запоминающие ячейки могут быть изготовлены таким образом просто и надежно. Имплантация может происходить при этом вертикально и/или наискось под туннельным слоем, причем области имплантации полностью соприкасаются под туннельным слоем, или их выполняют близко друг к другу таким образом, что при приложении рабочего напряжения их зоны пространственного заряда выполняют так называемый эффект смыкания. Таким образом, под туннельным слоем получают очень гомогенную туннельную область, которая сопоставима с предварительно имплантированной туннельной областью, поэтому при программировании/стирании возникают равномерные напряженности поля и повышается срок службы.
Преимущественно соединительную зону плавающего затвора и соединительную зону управляющего электрода выполняют одновременно с соответствующими слоями плавающего затвора и слоями управляющего электрода ячейки с туннельным окном и транзисторной запоминающей ячейки, благодаря чему обеспечивается дальнейшее упрощение процесса изготовления.
В зависимых пунктах формулы охарактеризованы предпочтительные выполнения изобретения.
Изобретение более подробно описано ниже с помощью примеров выполнения со ссылкой на чертеж, на котором изображают: - фиг.1: разрез энергонезависимой полупроводниковой запоминающей ячейки с отдельным туннельным окном согласно первому примеру выполнения; - фиг. 2: увеличенный разрез изображенной на фиг. 1 ячейки с туннельным окном согласно второму примеру выполнения; - фиг. 3: увеличенный разрез ячейки с туннельным окном согласно второму примеру выполнения; - фиг.4: увеличенный разрез ячейки с туннельным окном согласно третьему примеру выполнения; - фиг.5: разрез запоминающей ячейки ЭППЗУ согласно уровню техники; - фиг. 6: разрез запоминающей ячейки "быстрого" ППЗУ согласно уровню техники.
На фиг. 1 изображен схематичный разрез энергонезависимой полупроводниковой запоминающей ячейки с отдельным туннельным окном согласно первому примеру выполнения. Одинаковые ссылочные позиции обозначают одинаковые или схожие слои или компоненты, как на фиг.5 и 6, поэтому подробное описание ниже отсутствует.
На фиг. 1 на полупроводниковой подложке 100 выполнены транзисторная запоминающая ячейка TZ, ячейка TF с туннельным окном и соединительная зона VB. Транзисторная запоминающая ячейка TZ, соединительная зона VB и ячейка TF с туннельным окном представляют собой при этом собственно запоминающую ячейку SZ. Преимущественно полупроводниковая подложка 100 состоит из кремния, однако она может содержать также полупроводниковое соединение А
IIIВ
V или другую полупроводниковую подложку. Запоминающая ячейка SZ может быть реализована в виде p-МОП-ячейки, n-МОП-ячейки или КМОП-ячеек в полупроводниковой подложке 100, причем предусмотрены соответствующие карманы p- и/или n-типа.
На фиг. 1 транзисторная запоминающая ячейка TZ состоит из изолирующего слоя 3 затвора, например термически выполненного SiO
2. Над слоем 3 затвора находится проводящий слой 5 плавающего затвора (поликремний) для накопления зарядов. В соответствии с накопленными в слое 5 плавающего затвора зарядами находящаяся под слоем 3 затвора канальная область KG становится проводящей или непроводящей, в результате чего при считывании запоминающей ячейки SZ может быть считана логическая информация 0 или 1. Для управления транзисторной запоминающей ячейкой TZ предусмотрен слой 7 управляющего электрода, изолированный от слоя 5 плавающего затвора диэлектрическим слоем 6. Таким образом, удерживаемый в слое 5 плавающего затвора заряд не может стекать ни в полупроводниковую подложку 100, ни в слой 7 управляющего электрода. На расстоянии от транзисторной запоминающей ячейки TZ на фиг.1 находится ячейка TF с туннельным окном, которая через соединительную зону VB связана с транзисторной запоминающей ячейкой TZ и служит для записи и стирания путем, например, инжекции горячих носителей заряда и/или туннелирования по Фаулеру-Нордхайму.
Ячейка TF с туннельным окном состоит преимущественно из тех же слоев, что и транзисторная запоминающая ячейка TZ, причем лишь туннельный слой 4 имеет достаточно малую для туннелирования толщину. Туннельный слой 4 состоит преимущественно из туннельного оксидного слоя, например SiO
2. Лежащий над ним слой Т5 плавающего затвора туннельного окна состоит преимущественно из того же материала, что и слой 5 плавающего затвора транзисторной запоминающей ячейки TZ и через диэлектрический слой Т6 туннельного окна изолирован от электропроводящего слоя Т7 управляющего электрода туннельного окна. Диэлектрический слой Т6 туннельного окна состоит, как и диэлектрический слой 6, преимущественно из последовательности ОНО-слоев (оксид/нитрид/оксид), причем он может также состоять, однако, из дополнительного изолирующего диэлектрического слоя. Проводящий слой Т7 управляющего электрода туннельного окна, а также проводящий слой Т5 плавающего затвора туннельного окна, как и слой 7 управляющего электрода и слой 5 плавающего затвора, состоят преимущественно из поликремния, однако могут состоять также из другого проводящего и/или накапливающего заряд материала.
Соединительная зона VB состоит обычно из той же последовательности слоев, что и транзисторная запоминающая ячейка TZ или ячейка TF с туннельным окном, причем, в основном, слой 7 управляющего электрода связан через соединительную зону VB7 управляющего электрода со слоем Т7 управляющего электрода туннельного окна, а слой 5 плавающего затвора - через соединительную зону VB5 плавающего затвора со слоем Т5 плавающего затвора туннельного окна. Соединительная зона 7 управляющего электрода и соединительная зона 5 плавающего затвора могут быть, однако, реализованы также посредством металлически проводящих дорожек и/или диффузионных областей в полупроводниковой подложке 100.
Существенным для настоящего изобретения является, в частности, выполнение отдельно друг от друга транзисторной запоминающей ячейки TZ и ячейки TF с туннельным окном, которая может быть реализована путем подходящего травления и/или фотолитографии. Ячейка TF с туннельным окном может иметь при этом выступ, носик или иную геометрическую структуру, у которой возможна преимущественно двухсторонняя имплантация с туннельной имплантацией I
T.
На фиг.1 в соответствии с этим туннельную область TG выполняют посредством относительно поздно осуществляемой в процессе изготовления туннельной имплантации I
T, которая преимущественно соответствует туннельной имплантации у одновременно изготовленных запоминающих ячеек "быстрых" ППЗУ. За счет этого могут быть выполнены как ячейки TF с туннельным окном запоминающей ячейки SZ, так и зоны с туннельным окном изготовленных в том же процессе запоминающих ячеек "быстрого" ППЗУ (не показаны). Поскольку туннельный слой 4 запоминающей ячейки SZ, согласно изобретению, выполняют преимущественно за ту же операцию, что и запоминающих ячеек "быстрого" СППЗУ (не показаны), обе запоминающие ячейки обладают одинаковыми свойствами программирования/стирания, причем потребность в площади уменьшена, а срок службы увеличен.
Ниже подробно описан способ изготовления энергонезависимой полупроводниковой запоминающей ячейки. Прежде всего в полупроводниковой подложке 100 посредством процесса STI (shallow trench isolation) выполняют активные зоны для ячейки TF с туннельным окном и транзисторной запоминающей ячейки TZ. Образовавшиеся таким образом канавки заполняют преимущественно осажденным слоем SiO
2, а затем планаризируют. Равным образом для изоляции активных зон можно применять процесс LOCOS.
После этого в активных зонах транзисторной запоминающей ячейки TZ и ячейки TF с туннельным окном выполняют и соответственно структурируют слой 3 затвора и туннельный слой 4. Затем наносят слой 5 плавающего затвора, диэлектрический слой 6 и слой 7 управляющего электрода, которые структурируют таким образом, что возникает изображенный на фиг.1 разрез.
На фиг.1 STI-слои находятся в лежащих параллельно изображенному разрезу зонах запоминающей ячейки SZ (не показаны). Равным образом соединительная зона VB7 управляющего электрода и соединительная зона VB5 плавающего затвора обозначают соответствующие слои в (пространственно) позадилежащей плоскости разреза. Для выполнения ячейки TF с туннельным окном и транзисторной запоминающей ячейки TZ осуществляют затем травление слоев 3, 5, 6 и 7 или 4, Т5, Т6 и Т7, в результате чего возникают изображенные на фиг.1 штабелеобразные ячейки TF и TZ. При осуществляемой затем туннельной имплантации I
T рядом со штабелеобразной ячейкой TF с туннельным окном выполняют с самосовмещением область 2 имплантации, причем за счет эффектов рассеяния под туннельным слоем 4 образуется туннельная область TG. При последующей имплантации истока-стока (не показана) между ячейкой TF с туннельным окном и на обеих сторонах транзисторной запоминающей ячейки SZ выполняют с самосовмещением области 1 истока-стока. При этом ячейка TF с туннельным окном может использовать вспомогательный слой или спейсер (не показан).
Область 1 истока-стока между транзисторной запоминающей ячейкой SZ и ячейкой TF с туннельным окном создает при этом контакт как с ячейкой TF с туннельным окном, так и с транзисторной запоминающей ячейкой TZ и служит как для считывания, так и для программирования/стирания запоминающей ячейки SZ.
На фиг.2 изображен увеличенный разрез изображенной на фиг.1 ячейки TF с туннельным окном на этапе туннельной имплантации. На фиг.2 на полупроводниковой подложке 100 находится штабелеобразное устройство из туннельного слоя 4, слоя Т5 плавающего затвора туннельного окна, диэлектрического слоя Т6 туннельного окна и слоя Т7 управляющего электрода туннельного окна. После структурирования этой штабелеобразной ячейки TF с туннельным окном происходит собственно туннельная имплантация I
T для образования туннельной области TG под туннельным слоем 4. При этом с самосовмещением с использованием штабелеобразной ячейки TF с туннельным окном выполняют с обеих сторон область 2 имплантации так, что она касается туннельного слоя 4 под ним, и тем самым образуется гомогенная туннельная область TG.
Подобное выполнение областей 2 имплантации возможно, в частности, при очень маленьких размерах структур, менее 1 мкм, причем эффекты рассеяния при имплантации используют для выполнения совпадающих туннельных областей TG. Для имплантации n-областей пригоден, в частности, As, поскольку он имеет небольшую глубину проникновения и относительно высокую диффузию. Для легирования может применяться, однако, также Ph и/или Sb. Равным образом для выполнения p-областей могут применяться p-легирующие материалы, если они имеют достаточное рассеяние под туннельным слоем 4 и создают за счет этого достаточно гомогенную туннельную область TG.
В качестве альтернативы вертикальной туннельной имплантации I
T можно осуществлять также наклонную туннельную имплантацию I
TS, причем имплантация происходит под туннельный слой 4 под углом 5-8
o. При этом, например, область 2 имплантации образуется в полупроводниковой подложке 100 с одной стороны полностью под действующей в качестве маски ячейкой TF с туннельным окном. Таким образом, под туннельным слоем 4 можно также создать гомогенную туннельную область TG. В качестве альтернативы изображенной на фиг.3 односторонне наклонной туннельной имплантации I
TS туннельная имплантация может происходить также с нескольких сторон (двух) наклонно под туннельный слой 4.
На фиг. 4 туннельная имплантация I
T может происходить далее таким образом, что образовавшиеся в полупроводниковой подложке 100 соответствующие области 2 имплантации не касаются друг друга, а лишь частично простираются под туннельный слой 4. Области 2 имплантации простираются, однако, под туннельный слой 4 настолько, что при приложении рабочего напряжения (например, напряжения программирования/стирания, например, -10 В/ +6 В) зоны RLZ пространственного заряда областей 2 имплантации касаются друг друга, в результате чего возникает так называемый эффект смыкания и под туннельным слоем 4 снова образуется гомогенная туннельная область. Также в этом случае получают запоминающую ячейку, отличающуюся повышенным сроком службы, т.е. числом циклов программирования/стирания.
Согласно изобретению, туннельную имплантацию I
T осуществляют преимущественно с использованием всей ячейки TF с туннельным окном в качестве маски. Однако в качестве слоя маски можно использовать также лишь один из находящихся в ячейке с туннельным окном слоев или дополнительный слой маски в виде фоторезиста и/или износоустойчивой маски. Преимущественно для туннельной имплантации I
T можно использовать так и так применяемую в стандартных процессах LDD-имплантацию (lightly doped drain) или MD-имплантацию (matrix drain).
Вместо описанной выше последовательности слоев можно использовать также другую последовательность слоев (например, SONOX), если за счет этого возможно образование энергонезависимой полупроводниковой запоминающей ячейки с возможностью повторной записи.
Формула изобретения
1. Способ изготовления энергонезависимой полупроводниковой запоминающей ячейки с отдельным туннельным окном, состоящий из следующих этапов: выполнение ячейки (TF) с туннельным окном с туннельной областью (TG), туннельного слоя (4), запоминающего слоя (Т5) туннельного окна, диэлектрического слоя (Т6) туннельного окна и слоя (Т7) управляющего электрода туннельного окна; выполнение транзисторной запоминающей ячейки (TZ) с канальной областью (KG), слоя (3) затвора, запоминающего слоя (5), диэлектрического слоя (6) и слоя (7) управляющего электрода с выполнением отдельно друг от друга транзисторной запоминающей ячейки (TZ) и ячейки (TF) с туннельным окном в активных областях полупроводниковой подложки (100), а также соединительной зоны (VB) для соединения ячейки (TF) с туннельным окном с транзисторной запоминающей ячейкой (TZ) в неактивной области полупроводниковой подложки (100), при этом легирование туннельной области (TG) в активной области ячейки (TF) с туннельным окном осуществляют после выполнения туннельного слоя (4), при этом выполнение туннельной области (TG) осуществляют таким образом, что области (2) имплантации простираются полностью под туннельный слой (4), и при приложении рабочего напряжения зоны (RLZ) пространственного заряда областей 2 имплантации простираются полностью под туннельный слой, отличающийся тем, что туннельную область выполняют посредством относительно поздно осуществляемой в процессе изготовления туннельной имплантации IT, преимущественно соответствующей туннельной имплантации у одновременно изготовленных запоминающих ячеек "быстрых" ППЗУ, за счет чего могут быть выполнены как ячейки TF с туннельным окном запоминающей ячейки SZ, так и зоны с туннельным окном изготовленных в том же процессе запоминающих ячеек "быстрого" ППЗУ, причем обе запоминающие ячейки обладают одинаковыми свойствами программирования/стирания.
2. Способ по п.1, отличающийся тем, что выполнение туннельной области (TG) осуществляют с MD-имплантацией.
3. Способ по п.1, отличающийся тем, что выполнение туннельной области (TG) осуществляют с LDD-имплантацией.
РИСУНКИ
Рисунок 1,
Рисунок 2,
Рисунок 3,
Рисунок 4,
Рисунок 5,
Рисунок 6