Способ измерения физико-механических характеристик материала листового проката
Предлагаемый способ относится к методам исследования внутреннего строения материала с помощью ультразвука. Технический результат - разработка способа экспресс-контроля расширенной номенклатуры физико-механических характеристик материала движущегося листового проката. Согласно предложенного способа, изделие помещают в жидкость, излучают импульсы упругих колебаний нормально к поверхности изделия. Принимают первый и второй прошедшие через лист импульсы продольной волны, импульс поперечной волны, однократно прошедший через лист, и импульс, прошедший через жидкость при отсутствии изделия в измерительном тракте. Вычисляют скорости распространения упругих волн в жидкости и изделии. Определяют прочностные характеристики материала по измеренной скорости распространения продольной волны. При этом дополнительно измеряют амплитуды первого и второго прошедших через лист импульсов и амплитуду импульса, прошедшего через жидкость, определяют плотность материала изделия. 2 з.п.ф-лы, 2 ил.
Предлагаемое изобретение относится к методам исследования внутреннего строения материала с помощью ультразвуковых волн. Главным образом оно может быть использовано для экспресс-контроля физико-механических характеристик материала движущегося металлопроката, таких как упругие характеристики (модуль Юнга, модуль сдвига, коэффициент Пуассона) и прочностных (предел прочности, предел текучести, твердость и др.) в металлургической, машиностроительной и других отраслях промышленности.
Широко известны способы, устройства и нормативные документы по измерению физико-механических характеристик материалов. В частности, для измерения предела прочности, предела текучести и модуля Юнга проводят разрывные испытания специально изготовленных из материала изделия стандартных образцов круглого или квадратного сечения [1] . Твердость материала (по Роквеллу, Бринелю и Виккерсу) определяют путем вдавливания шарика или алмазной пирамидки в образец материала с последующим измерением полученного отпечатка [1] . Недостатками таких способов и устройств являются трудоемкость и длительность процесса измерений, необходимость изготовления специальных образцов из материала изделия. Известны портативные устройства экспресс-контроля твердости материала на самом изделии, основанные на измерении высоты отскока шарика от их поверхности или ухода частоты колебаний пьезопреобразователя от резонансной при вдавливании пирамидки в металл [2]. Недостатками таких устройств являются измерение твердости только поверхностного слоя материала и невозможность его применения для контроля движущихся изделий. Известны способы определения физико-механических характеристик материалов с помощью ультразвука. Эти способы основаны на известных функциональных или корреляционных зависимостях между скоростями распространения продольных и поперечных волн в материале изделия и некоторыми физико-механическими характеристиками. В частности, упругие характеристики - модуль Юнга Е, модуль сдвига G и коэффициент Пуассона









1. Генератор высокочастотных электрических импульсов. 2. Излучающий преобразователь. 3. Иммерсионная жидкость. 4. Контролируемое изделие. 5. Приемный кольцевой преобразователь. 6. Усилитель с детектором. 7. Измеритель временных интервалов. 8. Измеритель амплитуд сигналов. Сущность предлагаемого изобретения заключается в следующем: короткий ультразвуковой импульс, создаваемый излучающим преобразователем, падает из жидкости нормально на поверхность движущегося листового проката. Приемный кольцевой преобразователь принимает однократно U1 и двукратно U2 прошедшие через лист импульсы продольной Cl волны, импульс U3 поперечной Ct волны, прошедшей через лист, и преобразует их в электрические сигналы. Если в акустическом тракте нет изделия, то приемный преобразователь принимает сигнал U4, прошедший через жидкость от излучателя к приемному преобразователю. Для определения скорости распространения упругих волн в материале движущегося листового проката неизвестной толщины измеряются временные интервалы t1, t2, t3, t4 между посылкой и принятыми сигналами. Время прихода t1 первого прошедшего импульса U1 определяется:

где С0 и Сl - скорости звука в жидкости и материале изделия, Нх - неизвестная толщина в точке прозвучивания, L - известное расстояние между излучающим И и приемным П преобразователями. Время t2 второго прошедшего импульса U2 составляет:

Время t3 прошедшего через лист импульса U3 поперечной волны составляет:

А время t4 сигнала, прошедшего через воду:
t4=L/C0. (7)
Неизвестная толщина материала Нх в точке прозвучивания, скорости распространения продольной l и поперечной Ct волн в материале, а также скорость С0 в воде определяются из решения уравнений (4)-(7):

Кроме этого, измеряются амплитуды первого U1 и второго U2 прошедших через лист импульсов продольных волн, а также амплитуда U4 импульса, прошедшего через жидкость. Значения амплитуд этих сигналов в соответствии с уравнениями акустического тракта [3] можно записать в виде:



где Кv - коэффициент двойного электромеханического преобразования излучателя И и приемника П, Uг - амплитуда возбуждающего электрического напряжения, подаваемого на излучающий преобразователь И от генератора высокой частоты;








Совместное решение уравнений (11) и (12) позволяет определить коэффициент отражения
R2+qR-1=0 и

и плотность материала изделия:

где

Полученные значения скорости распространения продольных волн Сl в материале изделия позволяет по известным корреляционным характеристикам определить предел прочности, предел текучести [7] и твердость материала [8]. Полученные в результате измерений значения скорости распространения поперечных и продольных волн, а также плотности материала позволяют определить модуль сдвига G, коэффициент Пуассона v и модуль Юнга Е:
G =




Рассмотрение предлагаемого способа показывает, что он позволяет не только измерить скорости распространения продольных и поперечных волн в материале движущегося листового проката и на основе этого определить некоторые прочностные характеристики материала, но и измерить плотность материала, что позволяет по известным функциональным зависимостям определять упругие характеристики материала (модуль Юнга, модуль сдвига и коэффициент Пуассона). Источники информации
1. Шулаев И.Л. Контроль в производстве черных металлов. М.: Металлургия, 1978. 2. Крауткрамер И. , Крауткрамер Г. Ультразвуковой контроль материалов. Справочник. М.: Металлургия, 1991. 3. Неразрушающий контроль. Под ред. Сухорукова В.В., т.2, Акустические методы контроля. Ермолов И.Н., Алешин Н.П., Потапов А.И. М.: Высшая школа, 1991. 4. Ботаки А.А., Ульянов В.Л., Шарко А.В. Ультразвуковой контроль прочностных свойств конструкционных материалов. М.: Машиностроение, 1983. 5. Способ измерения скоростей распространения продольных и поперечных звуковых волн в плоских изделиях. Авторское свидетельство СССР 1146558, Б.И. 11, 1985. 6. Паврос А. С., Паврос С.К., Щукин А.В. Измерение скоростей распространения продольных и поперечных волн в материале движущихся изделий. Труды конференции ЛЕОТЕСТ, 2002, г. Львов. 7. Ботаки А.А., Ульянов В.Л., Шарко А.В. Ультразвуковой контроль прочностных свойств конструкционных материалов. М.: Машиностроение, 1983, стр. 61. 8. Ботаки А.А., Ульянов В.Л., Шарко А.В. Ультразвуковой контроль прочностных свойств конструкционных материалов. М.: Машиностроение, 1983, стр. 59.
Формула изобретения



РИСУНКИ
Рисунок 1, Рисунок 2