Способ измерения скорости движения рассеивающих микрообъектов
Изобретение относится к спекл-оптике, в частности к измерительной технике, и может найти применение для измерения скорости поперечного перемещения рассеивающих объектов, в том числе и микроскопических, в частности капиллярных потоков жидкости, содержащей рассеивающие частицы, а также для определения продольных координат движущихся рассеивающих объектов в биологии, медицине, машиностроении и других областях науки и техники. Сущность: облучение микрообъекта когерентным излучением осуществляют перпендикулярно направлению скорости движения попеременно двумя соосными пучками, плоскости перетяжек которых расположены на заданном расстоянии одна от другой, фотоприемники располагают в поле рассеянного излучения в дальней зоне дифракции в плоскости, перпендикулярной оси пучков, определяют относительные временные задержки сигналов фотоприемников для случаев освещения объекта каждым из пучков в отдельности, по разности величин относительных задержек определяют скорость движения рассеивающего объекта и его продольную координату. Техническим результатом является повышение точности измерения скорости движения рассеивающего объекта в абсолютных величинах с учетом направления движения, в том числе и микрообъекта, что достигается за счет исключения систематической ошибки в измерениях скорости, связанной с невозможностью точной продольной локализации объекта относительно измерительного устройства. 3 ил.
Изобретение относится к спекл-оптике, в частности к измерительной технике, и может найти применение для измерения скорости поперечного перемещения рассеивающих объектов, в том числе и микроскопических, в частности капиллярных потоков жидкости, содержащей рассеивающие частицы, а также для определения продольных координат движущихся рассеивающих объектов в биологии, медицине, машиностроении и других областях науки и техники.
Известен способ определения скорости движения диффузно рассеивающих объектов, включающий освещение объекта когерентным излучением, измерение скорости движения полученного спекл-поля в плоскости объекта путем оптического сканирования его изображения и регистрацию интенсивности в плоскости, оптически сопряженной с плоскостью объекта [Авторское свидетельство СССР 1474551, МПК G 01 Р 3/36]. Основным недостатком этого метода является его сложность, т.к. для его реализации необходимо применение оптико-механических сканаторов, кроме того, снижающих точность измерения. Кроме того, способ требует формирования в плоскости микрообъекта развитого спекл-поля, что физически не осуществимо при исследовании движения микрообъектов с высоким пространственным разрешением, т. е. в ситуации, когда в пределах освещенного объема находится небольшое число рассеивающих центров. Кроме того, для определения фактической скорости объекта этим способом необходимо точное оптическое согласование плоскости объекта и плоскости регистрации рассеянного излучения с помощью объектива с заданным линейным увеличением, что приводит к значительным систематическим погрешностям при использовании объективов с большим увеличением при измерении скорости движения микрообъектов, вызываемой продольными смещениями объекта, превышающими глубину резкости объектива. Наиболее близким к заявляемому является способ корреляционного измерения скорости, заключающийся в облучении диффузно рассеивающего объекта пучком оптического излучения, регистрации флуктуации интенсивности рассеянного света в плоскости, оптически сопряженной с плоскостью объекта посредством объектива с заданным увеличением с помощью двух фотоприемников. По относительной задержке сигналов фотоприемников вычисляют скорость движения объекта (А.С. СССР 1675782, МПК G 01 P 3/08). Однако данному способу присущи недостатки, связанные с оптическим сопряжением плоскости объекта и плоскости регистрации, снижающих точность измерений и ограничивающих применимость данного способа к микрообъектам. Задачей изобретения является повышение точности измерения скорости движения рассеивающего объекта в абсолютных величинах с учетом направления движения, в том числе и микрообъекта. Это достигается за счет исключения систематической ошибки в измерениях скорости, связанной с невозможностью точной продольной локализации объекта относительно измерительного устройства. Поставленная задача решается тем, что в способе измерения скорости движения рассеивающих объектов, включающем облучение объекта когерентным излучением с заданной степенью расходимости, преобразование флуктуации интенсивности спекл-поля в двух пространственно разделенных точках в электрические сигналы с помощью двух фотоприемников с последующим определением скорости по величине относительной задержки электрических сигналов, согласно изобретению, облучение осуществляют перпендикулярно направлению скорости движения попеременно двумя соосными пучками, плоскости перетяжек которых расположены на заданном расстоянии одна от другой, фотоприемники располагают в поле рассеянного излучения в дальней зоне дифракции в плоскости, перпендикулярной оси пучков, а относительные временные задержки сигналов фотоприемников определяют для случаев освещения объекта каждым из пучков в отдельности, по разности величин относительных задержек определяют скорость движения рассеивающего объекта и его продольную координату. Способ поясняется чертежами, где на фиг.1 представлена схема измерения скорости рассеивающего объекта, на фиг.2 - график зависимости относительной временной задержки от координаты плоскости перетяжки пучка, на фиг.3 - график зависимости обратной временной задержки от скорости движения объекта, где 1, 2 - лазерные пучки, 3 - рассеивающий объект, 4 - поле рассеянного излучения, 5 - диафрагма, 6 - фотоприемник, 7 - усилитель, 8 - компьютер, z1 - координата плоскости перетяжки первого пучка относительно плоскости рассеивающего объекта, z2 - координата плоскости перетяжки второго пучка относительно плоскости рассеивающего объекта, l - расстояние между плоскостью рассеивающего объекта и плоскостью наблюдения,



















Формула изобретения









РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3