Система оперативной диагностики биологического загрязнения воздуха в вентиляционных каналах зданий и сооружений
Изобретение относится к средствам мониторинга окружающей среды и может найти применение в системах, осуществляющих экспресс-контроль качества воздуха в вентиляционных каналах зданий и сооружений на предмет выявления в них распыленных мелкодисперсных органических порошков и аэрозолей, содержащих патогенные микроорганизмы. Система содержит связанные с диагностическим центром оптические волокна, светоделители, вводные каналы, предназначенные для ввода в оптические волокна монохроматического излучения лазера для возбуждения световых сигналов рассеяния и флуоресценции в точках контроля в случае появления распыленных дисперсных органических веществ, выводные каналы предназначенные для транспортировки возбужденных сигналов рассеяния и флуоресценции для передачи их в соответствующие фотоприемники диагностического центра, решающий блок, вырабатывающий на основе амплитудной оценки принятых возбужденных сигналов рассеивания и интегральной оценки принятых возбужденных сигналов флуоресценции в полосе флуоресценции диагностические сигналы "выявления" или "невыявления" биологического загрязнения воздуха по каждой из точек контроля. Технический результат - обеспечение оперативной диагностики биологического загрязнения воздуха в отношении множества точек в вентиляционных каналах зданий и сооружений. 1 ил.
Изобретение относится к средствам мониторинга окружающей среды и может найти применение в системах, осуществляющих экспресс-контроль качества воздуха в вентиляционных каналах зданий и сооружений на предмет выявления в них распыленных мелкодисперсных органических порошков и аэрозолей, содержащих патогенные микроорганизмы, представляющие опасность для людей.
В настоящее время необходимость контроля качества воздуха в вентиляционных каналах зданий и сооружений, в том числе экспресс-контроль в целях оперативного выявления бактериологического загрязнения, приобретает особую актуальность в связи с угрозами применения террористами бактериологического оружия. Дело в том, что существующие системы вентиляции, см. например [1], которыми оснащены жилые здания, отели, официальные учреждения, коммерческие центры, а также места массового скопления людей, например помещения и туннели метрополитена, залы крупных торговых, общественно-культурных и спортивных центров и т.д., доступны для осуществления бактериологической атаки злоумышленниками. При этом, как показали события осени 2001 г. в США, наибольшую опасность представляет скрытое заражение воздушного пространства посредством распыления и рассеивания мелкодисперсных органических порошков и аэрозолей, содержащих патогенные микроорганизмы - бактерии, вирусы, грибки, риккетсии, а также микробные токсины, являющиеся возбудителями крайне тяжелых инфекционных заболеваний (чума, сибирская язва, оспа, сап и др.) со смертельным исходом. Поскольку поражающее воздействие биологического оружия зависит от количества попавших в организм болезнетворных микробов или токсинов, то задача быстрого обнаружения следов биологического заражения воздуха является жизненно необходимой. В этой связи оперативность контроля в отношении множества точек становятся определяющими факторами, влияющими на безопасность масс людей. Подавляющее большинство методов контроля качества воздуха, позволяющих оценить его газовый состав и/или наличие биологических загрязнителей, в том числе опасных для человека, основано на лабораторном анализе проб воздуха. При этом, в частности, при анализе состава воздуха могут использоваться оптико-радиометрические методы [2], основанные на использовании перестраиваемого лазера, методы лазерного атомно-флуоресцентного анализа [3], лазерные газоанализаторы [4], [5]. Диагностика возбудителей инфекционных и паразитарных болезней при этом может осуществляться, например, путем анализа соответствующим образом приготовленных лабораторных препаратов на основе проб воздуха с использованием методов люминесцентной микроскопии [6]. По своей сути рассмотренные методы и средства анализа качества воздуха ближе к лабораторным, чем к промышленным, и при всех своих достоинствах (точность, достоверность) не могут решить задачу обеспечения оперативного контроля в отношении множества точек, т.е. малоэффективны при решении практических задач, возникающих в связи с угрозой биотерроризма. Оперативный дистанционный контроль за состоянием воздушной среды по такому специфическому параметру как запыленность, в том числе контроль за запыленностью воздуха в вентиляционных каналах, может осуществляться с помощью оптических пылемеров [7], работающих по принципу контроля проходящего светового луча. В связи со спецификой решаемой задачи оптические пылемеры "загрублены" и с их помощью нельзя решить задачу по обнаружению распыленных мелкодисперсных органических порошков и аэрозолей, содержащих патогенные микроорганизмы. Оперативный дистанционный контроль за текущим состоянием воздушной среды во множестве контрольных точек осуществляется в известных системах пожарной сигнализации, см. например [8], [9]. Эти системы содержат разветвленную сеть датчиков, реагирующих на изменение параметров воздушной среды в точках контроля, обусловленное загрязнением воздуха продуктами горения. В большинстве случаев, системы пожарной сигнализации оснащаются чувствительными оптическими датчиками, реагирующими на задымленность, см. например [10], [11], [12]. В лучших системах применяются особо чувствительные датчики, например аналогичные [13] , работающие как по принципу регистрации рассеянного излучения, так и по принципу контроля проходящего света. Эти датчики посредством каналов передачи сигналов связанны с диагностическим центром, осуществляющим прием и анализ сигналов, а также формирование сигналов тревоги в случае обнаружения задымленности. По своей сути системы пожарной сигнализации функционируют как системы оперативной диагностики загрязнения воздуха в точках контроля, причем посредством анализа изменений оптических параметров воздушной среды диагностируется частный случай загрязненности - задымленность. В обобщенном виде система оперативной диагностики загрязнения воздуха, реализованная в [9], как наиболее близкая к заявляемой системе по основной выполняемой функции - оперативной диагностики загрязнения воздуха в контролируемых точках, а также по имеющейся возможности реализации данной функции в отношении вентиляционных каналов зданий и сооружений, принята в качестве прототипа. Система, принятая в качестве прототипа, содержит средства для возбуждения сигналов, характеризующих состояние воздуха в точках контроля. В примере, рассмотренном в [9], эти средства выполнены на основе оптических датчиков задымленности, т. е. осуществляется диагностика загрязнения воздуха продуктами сгорания. Эти датчики размещены в определенных контролируемых точках здания или сооружения и связаны с диагностическим центром электрическими линиями связи. По этим линиям в соответствии с определенной программой опроса происходит периодическая инициализация датчиков и прием формируемых ими сигналов. При появлении дыма в любой из контролируемых точек, соответствующий датчик в ответ на запрос формирует сигнал, отличающийся от "нормального", который воспринимается центром обработки информации как сигнал "тревоги". Центр обработки информации идентифицирует "точку тревоги" и формирует соответствующее сообщение для обслуживающего персонала и/или команду на автоматическое приведение в действие противопожарных устройств в этой точке. Поскольку датчики системы реагируют на изменение прозрачности воздуха в контролируемой точке, то, в определенной мере, система-прототип может решать задачи по выявлению распыленных мелкодисперсных органических порошков и аэрозолей, содержащих патогенные микроорганизмы, а именно, в той мере, в которой это распыление сопровождается ухудшением прозрачности воздуха. В этом качестве и в этой мере система-прототип может выполнять функции по оперативной диагностике биологического загрязнения воздуха в вентиляционных каналах зданий и сооружений, однако реальный эффект от ее применения для решения практических задач, возникающих в связи с угрозой биотерроризма, будет невелик. Задачей, на решение которой направлено заявляемое изобретение, является обеспечение возможности осуществления оперативной диагностики биологического загрязнения воздуха в отношении множества точек в вентиляционных каналах зданий и сооружений в условиях угрозы биотерроризма, т.е. в условиях возможного распыления и рассеивания злоумышленниками мелкодисперсных органических порошков и аэрозолей, содержащих патогенные микроорганизмы. Сущность заявляемого изобретения состоит в том, что в системе оперативной диагностики биологического загрязнения воздуха в вентиляционных каналах зданий и сооружений, содержащей связанные с диагностическим центром средства для возбуждения сигналов, характеризующих состояние воздуха в точках контроля, указанные средства выполнены в виде оптических волокон, введенных своими сколотыми или отполированными торцами в вентиляционные каналы в точках контроля. Причем противоположные концы этих оптических волокон соединены через светоделители с вводными и выводными оптическими каналами диагностического центра, предназначенными соответственно для ввода монохроматического излучения лазера, входящего в состав диагностического центра, в оптические волокна для возбуждения световых сигналов рассеяния и флуоресценции в точках контроля в случае появления в них распыленных дисперсных органических веществ и транспортировку в обратном направлении принимаемых указанными торцами оптических волокон возбужденных сигналов рассеяния и флуоресценции для передачи их в соответствующие фотоприемники, входящие в состав диагностического центра, снабженные оптическими спектрально-селективными фильтрами с частотными полосами, соответствующими частотным полосам возбужденных сигналов рассеивания и флуоресценции. При этом выходы фотоприемников связаны электрически с решающим блоком, вырабатывающим на основе амплитудной оценки принятых возбужденных сигналов рассеивания и интегральной оценки принятых возбужденных сигналов флуоресценции в полосе флуоресценции диагностические сигналы "выявления" или "невыявления" биологического загрязнения воздуха по каждой из точек контроля. Сущность изобретения и возможность его осуществления поясняются структурной схемой системы, представленной на чертеже. Заявляемая система в рассматриваемом примере выполнения содержит систему контролируемых вентиляционных каналов 1 здания или сооружения, в которых в качестве точек контроля выбраны N точек контроля 2 (21, 22,..., 2N). (Здесь и ниже термин "точка" применен не в геометрическом смысле, а в смысле "место", "локальная зона"). Система также содержит диагностический центр 3, с которым связаны N средств для возбуждения сигналов, характеризующих состояние воздуха в точках контроля 2 (21, 22,..., 2N). В состав диагностического центра 3 входят передающий 4 и приемный 5 блоки. Средства для возбуждения сигналов, характеризующих состояние воздуха в точках контроля 2 (21, 22,..., 2N), выполнены в виде оптических волокон 6 (61, 62, ..., 6N), введенных своими сколотыми или отполированными торцами в вентиляционные каналы 1 в точках контроля 2 (21, 22,..., 2N). Противоположные концы каждого из оптических волокон 6 соединены через соответствующие светоделители 7 (71, 72,..., 7N) с вводными 8 (81, 82,..., 8N) и выводными 9 (91, 92,..., 9N) оптическими каналами. Вводные оптические каналы 8 предназначены для ввода из передающего блока 4 монохроматического излучения в оптические волокна 6 для возбуждения световых сигналов рассеяния и флуоресценции в точках контроля 2 вентиляционных каналов 1 в случае появления в них распыленных дисперсных органических веществ - порошков или аэрозолей, содержащих патогенные микроорганизмы, представляющие опасность для людей. Выводные оптические каналы 9 предназначены для транспортировки в обратном направлении принимаемых указанными торцами оптических волокон 6 возбужденных сигналов рассеяния и флуоресценции для передачи их в приемный блок 5. Вводные оптические каналы 8 (81, 82,..., 8N) соединены с N оптическими выходами передающего блока 4, образованными N выходами его оптического коммутатора 10. Выводные оптические каналы 9 (91, 92,..., 9N) соединены с N оптическими входами приемного блока 5, образованными N входами его оптического коммутатора 11. В передающем блоке 4 вход оптического коммутатора 10 соединен оптически с источником возбуждающего оптического излучения - азотным лазером 12, формирующим импульсы УФ излучения на длине волны




Формула изобретения
Система оперативной диагностики биологического загрязнения воздуха в вентиляционных каналах зданий и сооружений, содержащая связанные с диагностическим центром средства для возбуждения сигналов, характеризующих состояние воздуха в точках контроля, отличающаяся тем, что средства для возбуждения сигналов, характеризующих состояние воздуха в точках контроля, выполнены в виде оптических волокон, введенных своими сколотыми или отполированными торцами в вентиляционные каналы в точках контроля, причем противоположные концы этих оптических волокон соединены через светоделители с вводными и выводными оптическими каналами диагностического центра, предназначенными, соответственно, для ввода монохроматического излучения лазера, входящего в состав диагностического центра, в оптические волокна для возбуждения световых сигналов рассеяния и флуоресценции в точках контроля в случае появления в них распыленных дисперсных органических веществ и транспортировки в обратном направлении принимаемых указанными торцами оптических волокон возбужденных сигналов рассеяния и флуоресценции для передачи их в соответствующие фотоприемники, входящие в состав диагностического центра, снабженные оптическими спектрально-селективными фильтрами с частотными полосами, соответствующими частотным полосам возбужденных сигналов рассеяния и флуоресценции, при этом выходы фотоприемников связаны электрически с решающим блоком, вырабатывающим на основе амплитудной оценки принятых возбужденных сигналов рассеяния и интегральной оценки принятых возбужденных сигналов флуоресценции в полосе флуоресценции диагностические сигналы “выявления” или “невыявления” биологического загрязнения воздуха по каждой из точек контроля.РИСУНКИ
Рисунок 1