Центробежная установка с газостатическим опорным узлом
Изобретение предназначено для осуществления технологических процессов, вызывающих значительную динамическую неуравновешенность ротора. Установка содержит корпус, рабочий орган, газостатический вертикальный опорный узел с несущими поверхностями в виде части сферы, пята которого соединена с валом, а подпятник выполнен с центральным отверстием для подвода газообразного рабочего тела к несущим поверхностям, систему газообеспечения, радиальное опорное устройство, содержащее подшипниковый узел и упругий опорный узел, состоящий из верхнего опорного основания, жестко соединенного с подшипниковым узлом, нижнего опорного основания, жестко соединенного с корпусом, и упругого опорного элемента, расположенного между опорными основаниями. Механическая передача состоит из трех валов, последовательно соединенных с возможностью пересечения осей, один из которых выполнен телескопическим. Пята установлена с образованием зазора между несущими поверхностями и имеет радиус несущей поверхности, обеспечивающий расположение центра кривизны выше центра масс ротора. Изобретение позволяет повысить надежность работы установки. 1 ил.
Изобретение относится к машиностроению, а именно к центробежным установкам с вертикальным ротором (дробилки, мельницы, центрифуги различного назначения, центробежные испытательные стенды), и может быть использовано для осуществления центробежных технологических процессов, вызывающих значительную динамическую неуравновешенность ротора.
Известна центробежная установка с газостатическим опорным узлом (центрифуга), содержащая корпус, рабочий орган, установленный внутри корпуса, газостатический вертикальный опорный узел с полусферическими несущими поверхностями, пята которого соединена с рабочим органом, образуя ротор, а подпятник (статор) которого имеет отверстия для подвода и отвода газа, систему газообеспечения на основе компрессора, связанную с подпятником, и пневмопривод, взаимодействующий с опорным узлом с возможностью радиальных и угловых смещений ротора, при этом центр кривизны несущих поверхностей совпадает или расположен выше центра масс ротора [1].Однако известная центробежная установка обладает низкой надежностью и не позволяет добиться значительного снижения динамических воздействий ротора на опорный узел и фундамент установки при осуществлении центробежных технологических процессов, вызывающих значительную динамическую неуравновешенность ротора при высоких удельных энергозатратах вследствие того, что функциональные характеристики опорного узла (параметры несущих поверхностей и величина зазора между несущими поверхностями), системы газообеспечения (параметры газового потока) и привода (вращательный момент, передаваемый на ротор) не оптимизированы.Известна также центробежная установка с газостатическим опорным узлом, содержащая корпус, рабочий орган, газостатический вертикальный опорный узел с несущими поверхностями в виде части сферы, пята которого беззазорно соединена с рабочим органом, образуя ротор, и имеет центр кривизны несущих поверхностей выше центра масс ротора, а подпятник выполнен с центральным отверстием для подвода газообразного рабочего тела к несущим поверхностям, систему газообеспечения, содержащую, по крайней мере, один вентилятор в качестве устройства для получения газообразного рабочего тела с давлением выше атмосферного и связанную с центральным отверстием подпятника, и привод с механической передачей, состоящей из трех валов, последовательно соединенных с возможностью пересечения осей, один из которых выполнен телескопическим [2].Однако данная центробежная установка обладает недостаточно высокой надежностью из-за возникающей динамической неуравновешенности ротора при осуществлении высокоинтенсивных центробежных технологических процессов и на резонансных частотах вращения ротора, что может привести к трению рабочего органа о корпус и выходу его из строя. Эти недостатки связаны с низкой радиальной и угловой устойчивостью ротора, вызванной отсутствием радиальной опоры, и с тем, что геометрические характеристики установки не оптимизированы с учетом расположения центра кривизны несущей поверхности пяты. Кроме этого, в известной установке возможно падение ротора на подпятник при аварийном отключении газостатического опорного узла.Задача изобретения состоит в повышении надежности работы установки путем исключения трения рабочего органа о корпус при осуществлении высокоинтенсивных центробежных технологических процессов и на резонансных частотах вращения ротора за счет повышения радиальной и угловой устойчивости ротора, оптимизации геометрических характеристик установки и в обеспечении предотвращения падения ротора на подпятник при аварийном отключении газостатического опорного узла.Сущность изобретения заключается в том, что для решения поставленной задачи в центробежной установке с газостатическим опорным узлом, содержащей корпус, рабочий орган, газостатический вертикальный опорный узел с несущими поверхностями в виде части сферы, пята которого объединена с рабочим органом, образуя ротор, и имеет центр кривизны несущей поверхности выше центра масс ротора, а подпятник выполнен с центральным отверстием для подвода газообразного рабочего тела к несущим поверхностям, систему газообеспечения, содержащую, по крайней мере, одно устройство для получения газообразного рабочего тела с давлением выше атмосферного и связанную с центральным отверстием подпятника, и привод с механической передачей, состоящей из трех валов, последовательно соединенных с возможностью пересечения осей, один из которых выполнен телескопическим, отличием является то, что установка дополнительно содержит вертикальный вал, установленный в роторе между рабочим органом и пятой, и радиальное опорное устройство, связывающее ротор с корпусом и содержащее подшипниковый узел, установленный на вертикальном валу, и упругий опорный узел, состоящий из верхнего опорного основания, жестко соединенного с подшипниковым узлом, нижнего опорного основания, жестко соединенного с корпусом, и упругого опорного элемента, расположенного между опорными основаниями, при этом пята установлена на валу с образованием зазора между несущими поверхностями, а расстояние между центром кривизны несущей поверхности пяты и центром масс ротора определяется уравнением, м:А = (0,2 - 0,8) R,расстояние между центром кривизны несущей поверхности пяты и большим основанием пяты определяется уравнением, м:Н = (0,25 - 0,6) R,расстояние между центром кривизны несущей поверхности пяты и соединением двух верхних валов механической передачи определяется уравнением, м:H1 =(0,1-1,0) R,расстояние между центром кривизны несущей поверхности пяты и плоскостью, в которой взаимодействуют верхнее опорное основание и упругий опорный элемент, определяется отношением, м:Н2

Формула изобретения
Центробежная установка с газостатическим опорным узлом, содержащая корпус, рабочий орган, газостатический вертикальный опорный узел с несущими поверхностями в виде части сферы, пята которого объединена с рабочим органом, образуя ротор, и имеет центр кривизны несущей поверхности выше центра масс ротора, а подпятник которого выполнен с центральным отверстием для подвода газообразного рабочего тела к несущим поверхностям, систему газообеспечения, содержащую, по крайней мере, одно устройство для получения газообразного рабочего тела с давлением выше атмосферного и связанную с центральным отверстием подпятника, и привод с механической передачей, состоящей из трех валов, последовательно соединенных с возможностью пересечения осей, один из которых выполнен телескопическим, отличающаяся тем, что установка дополнительно содержит вертикальный вал, установленный в роторе между рабочим органом и пятой, и радиальное опорное устройство, связывающее ротор с корпусом и содержащее подшипниковый узел, установленный на вертикальном валу, и упругий опорный узел, состоящий из верхнего опорного основания, жестко соединенного с подшипниковым узлом, нижнего опорного основания, жестко соединенного с корпусом, и упругого опорного элемента, расположенного между опорными основаниями, при этом пята установлена на валу с образованием зазора между несущими поверхностями, а расстояние между центром кривизны несущей поверхности пяты и центром масс ротора определяется уравнением, мА = (0,2 - 0,8)R,расстояние между центром кривизны несущей поверхности пяты и большим основанием пяты определяется уравнением, мН = (0,25 - 0,6)R,расстояние между центром кривизны несущей поверхности пяты и соединением двух верхних валов механической передачи определяется уравнением, мH1=(0,1-1,0)R,расстояние между центром кривизны несущей поверхности пяты и плоскостью, в которой взаимодействуют верхнее опорное основание и упругий опорный элемент, определяется отношением, мН2
РИСУНКИ
Рисунок 1