Порошковая проволока для электродугового напыления износостойкого покрытия
Изобретение может быть использовано при изготовлении деталей машин и механизмов, работающих в условиях жидкостного и полужидкостного трения. Порошковая проволока состоит из стальной оболочки и сердечника. Материал сердечника содержит алюминий, феррохром, железо, гематит и перманганат калия при следующем соотношении компонентов проволоки, мас.%: алюминий - 4,0-6,0; феррохром - 5,0-7,0; железо - 17,0-19,0; гематит - 1,5-1,9; перманганат калия - 0,3-0,7; стальная оболочка - остальное. Проволока обеспечивает нанесение покрытий, обладающих высокими износостойкостью и прочностью сцепления.
Изобретение относится к области газотермического напыления, а именно к напыляемым материалам в виде проволоки для нанесения износостойкого электродугового покрытия на рабочие поверхности деталей машин и механизмов, работающих в условиях жидкостного (гидродинамического) и полужидкостного (сухого или граничного) трения (т.е. при полном или частичном разделении трущихся поверхностей слоем смазки, когда большая часть нагрузки воспринимается трущейся поверхностью через слой смазки), например, шейки коленчатого вала, опорные шейки распределительного вала двигателя внутреннего сгорания (карбюраторного или дизельного).
Газотермические покрытия для этих нужд должны удовлетворять трем трудно совместимым требованиям: иметь высокие износостойкость, прочность и прочность сцепления с основой, чтобы выдерживать высокие нагрузки, в том числе цикличные. Раздельное выполнение этих требований не представляет особых затруднений. Например, известны различные материалы, которые наносятся на выработанные после интенсивного трения поверхности узлов и деталей машин методом электродугового напыления, в виде проволок сплошного сечения (см. В.С. Ивашко, И.Л. Куприянов, А.И Шевцов. Электротермическая технология нанесения защитных покрытий. - Минск: Навука i технiка, 1996, с.218-223) и порошковых проволок (см. Роянов В.А., Псарас Г.Г., Рубайло В.К. Ремонт машин с применением сварки и родственных технологий. - Мариуполь: ПГТУ, 1999, с.157-186). Стремление совместить в покрытии противоречивые требования привело к появлению порошковых проволок, состоящих из стальной оболочки и сердечника, включающего смеси порошков металлов, сплавов и неорганических соединений. Качество электродуговых покрытий, характеризуемое пористостью, прочностью, прочностью сцепления с основой, фазовым составом, структурой и воспроизводимостью указанных свойств, зависит от используемых проволоки и оборудования для напыления. Известны устройства (cм. Unger R.H., Belashchenko V.E., Kratochvil W.R. A new arc spray system to spray high density low oxide coatings/ Proceedings of the 15th International Thermal Spray Conference. Nice, France 25-29 May, 1998, Volume 2, p.1489-1493), обеспечивающие получение покрытий с низкой пористостью 1,6-1,9% (стандартные - 4,5-10%) и степенью окисленности 3,6-9% (стандартные - 7,5-13%), но невысокой прочностью сцепления покрытия с основой - 28-31 МПа. Таким образом, в рамках традиционных процессов электродугового напыления с использованием порошковых проволок качество покрытий остается недостаточным для работы в условиях тяжелого нагружения и повышенного износа. Наиболее перспективным для решения задачи качественного нанесения износостойких покрытий является метод электродугового напыления в сверхзвуковом потоке продуктов сгорания метана (см. Петров С.В., Сааков А.Г. Плазма продуктов сгорания в инженерии поверхности. - ТОПАС, Киев, 2000, с.175-208) при условии, что порошковая проволока разрабатывается с учетом особенностей процесса напыления. Из числа известных порошковых проволок по технической сущности и достигаемому эффекту наиболее близка порошковая проволока для получения покрытий по 2048273, МПК 7 С 23 С 4/06, 20.11.1995 (прототип), состоящая из стальной оболочки и сердечника. Данная порошковая проволока обеспечивает повышенные прочность и прочность сцепления покрытия с основой, стабильность дугового разряда, достаточную износостойкость в условиях жидкостного и полужидкостного трения. Однако покрытия, нанесенные с ее использованием, имеют пористость, что отрицательно сказывается на их износостойкости. Достигаемая прочность сцепления на отрыв недостаточна для работы тяжело нагруженных дизельных коленвалов. Недостатком указанного состава также является отсутствие в шихте компонентов - катализаторов, которые бы, с одной стороны, ускоряли бы протекание экзотермических реакций на стадии плавления и транспортировки капли, а с другой стороны, снижали бы вязкость расплава, что ведет к росту размеров капли на стадии ее формирования и, как следствие, увеличению пористости покрытия, формируемого такими частицами. А с увеличением скорости обдувающего потока (переходом на сверхзвуковое истечение сжатого газа) снижается время нахождения материала проволок в расплавленном состоянии. Это обстоятельство препятствует завершению химических превращений в каплях на стадии полета до основы, соответственно требуемые структура и фазовый состав покрытия в этом случае не могут быть получены. Задачей изобретения является повышение износостойкости, прочности сцепления с основой и прочности электродугового покрытия, получаемого из порошковой проволоки. Эта задача решается за счет совершенствования состава порошкового сердечника, порошковой проволоки с учетом интенсификации газодинамического дробления расплавленных капель, увеличения скорости их полета и сопутствующих снижению пористости покрытия, повышению однородности его структуры, а именно порошковая проволока для электродугового напыления износостойких покрытий состоит из стальной оболочки и сердечника, материал которого содержит алюминий, железо, феррохром и дополнительно включает гематит и перманганат калия при следующем соотношении компонентов проволоки, мас.%: алюминий - 4,0... 6,0; железо - 17,0...19,0; феррохром - 5,0...7,0; гематит - 1,5...1,9; перманганат калия - 0,3...0,7 и остальное стальная оболочка. В данном техническом решении содержание алюминия в количестве 4,0...6,0% способствует протеканию изотермической реакций по схеме 3МеО + 2АL --> Аl2О3 + 3Ме + Q, где МеО - оксид металла, а Q - тепловая энергия, выделяющаяся при прохождении реакции. Выделение тепла в результате протекания таких реакций в слабо окислительной атмосфере продуктов сгорания воздуха с метаном способствует повышению температуры напыляемых частиц и, как следствие, повышению прочности сцепления напыленных покрытий с основой. Кроме того, оксид Аl2О3, являющийся результатом таких реакций, представляет прочную и плотную пленку, которая располагаясь на поверхности напыляемых частиц, препятствует насыщению материала частицы во время ее полета к основе газами из окружающей атмосферы. С другой стороны, Аl2O3 способствует образованию сложных шпинелеобразных оксидов, типа Аl2О3
прочность сцепления покрытия с основой - 45 МПа;
степень избыточной окисленности - 7,5%;
средняя микротвердость - 320 H

максимальная микротвердость - 800 H

износостойкость по отношению к ст.45 - 1,5. 2. Оптимальный процесс электродугового напыления в сверхзвуковом потоке продуктов сгорания метана с воздухом. Режим напыления:
обдувающий газ - продукты сгорания воздуха с метаном;
температура обдувающего газа - 1600oС;
скорость обдувающего газа - 1100 м/с;
число Маха - 1,4;
расход смеси - 30 м3/ч;
ток дуги - 200 А;
напряжение на дуге - 37 В;
дистанция напыления - 220 мм;
скорость полета расплавленных капель - 300 м/с. Свойства покрытия:
толщина покрытия - 2,0 мм;
пористость покрытия - 1,5 %;
прочность сцепления покрытия с основой - 65 МПа;
степень избыточной окисленности - 2,0 %;
средняя микротвердость - 400 H

максимальная микротвердость - 1000 H

износостойкость по отношению к ст.45 - 2,0. Заявляемый состав порошковой проволоки обеспечивает повышенные (в 1,5... 2,0 раза) служебные характеристики покрытия, полученного методом электродугового напыления. Восстановленные коленчатые валы дизеля 12VFE17/24 в количестве 50 шт. наработали ресурс 600-800 тыс. километров, что в 1,5-2 раза превышает ресурс нового коленчатого вала.
Формула изобретения
Алюминий - 4,0-6,0
Феррохром - 5,0-7,0
Железо - 17,0-19,0
Гематит - 1,5-1,9
Перманганат калия - 0,3-0,7
Стальная оболочка - Остальное