Способ внепечной обработки стали
Авторы патента:
Изобретение относится к металлургии, а именно к внепечному рафинированию и модифицированию стали. Технический результат - повышение литейных и механических свойств, хладостойкости и износостойкости стали. В расплав стали в начале выпуска ее в ковш вводят щелочно-земельные металлы в виде природного минерала барий-стронций-кальциевого карбоната в количестве 4,0-7,0 кг/т стали. 10 табл.
Изобретение относится к черной металлургии и может быть использовано для внепечного (ковшевого) раскисления, рафинирования и модифицирования стали.
Известен способ раскисления и модифицирования стали, который заключается в том, что при окончательном раскислении и модифицировании ферротитаном, силикокальцием и ферробором в начале выпуска металла в ковш сначала вводят ферротитан в количестве 3,7-7,4 кг/т стали, а затем ферробор совместно с силикокальцием в количестве 0,1-0,29 и 1,0,-2,5 кг/т стали соответственно (см. авт.св. СССР 109446, С 21 С 7/06). Однако применение данного метода не обеспечивает необходимого одновременного раскисления, модифицирования и рафинирования стали. Причем исходная сталь должна содержать минимальное количество серы во избежание образования сульфидов титана неблагоприятной формы, которые резко снижают свойства. Не достигается также у сталей высоких значений износостойкости. Наиболее близким по технической сущности к предлагаемому способу является способ внепечного рафинирования и модифицирования стали смесью, включающей, мас. %: плавиковый шпат 1-5, карбонаты редкоземельных элементов 15-25, силикокальций - остальное (см. авт.св. СССР 1289893, С 21 С 7/00). Недостатком данного способа является невысокая рафинирующая и модифицирующая способность смеси. Данная смесь недостаточно полно рафинирует расплавы сталей от неметаллических включений и газов, особенно сульфидов пленочного вида и водорода. Кроме того, обработка расплавов известной смесью не обеспечивает высоких значений трещиноустойчивости и хладостойкости сталей, не способствует измельчению зерна и повышению износостойкости. Технической задачей изобретения является повышение литейных (жидкотекучесть, трещиноустойчивость) и механических (прочность, износостойкость, хладостойкость) свойств сталей различных структурных классов. Указанная задача решается тем, что в способе внепечной обработки стали, включающем рафинирование и модифицирование стали щелочно-земельными металлами в ковше, в отличие от прототипа, щелочно-земельные металлы вводят в расплав стали в виде природного минерала барий-стронций-кальциевого карбоната в количестве 4,0-7,0 кг/т стали. Перед выпуском расплавленного металла в ковш его, как обычно, обрабатывают слабыми раскислителями. После этого металл начинают сливать в ковш, в который загружен карбонат фракцией до 50 мм перед постановкой ковша на подогрев. Средний минеральный состав природного барий-стронций-кальциевого карбоната: бенстонит (Ва, Sr, Ca) СО3 - 60-90%; полевой шпат - 3-15%; пироксен - 3-15% и кварц - остальное. Средний химический состав карбоната в мас.%: SiO2 - 24,8; TiO2 - 0,9; Аl2О3 - 2,9; Fе2O3 - 4,0; MnO - 0,2; MgO - 0,9; CaO - 21,5; BaO - 16,0; SrO - 6,3; К2O - 3,0; Na2O - 1,5; CO2 - 18,0. Улучшение структуры и свойств сталей достигается за счет рафинирующе-модифицирующего действия карбоната: снижается загрязненность сталей неметаллическими включениями, особенно сульфидными, их размеры становятся меньше, а форма - близкой к глобулярной, практически исчезают их пограничные выделения; существенно измельчается зерно до 6-7 баллов по эталонной шкале ГОСТа 5639-82; изменяется морфология карбидной фазы; карбиды становятся менее разветвленными в металлической матрице. Введение в расплавы сталей барий-стронций-кальциевого карбоната сопровождается их интенсивным перемешиванием вследствие выделения пузырьков СО2. Это усиливает эффект рафинирования сталей от неметаллических включений и газов, особенно водорода, а также усредняет расплавы по температуре и химическому составу. В процессе кристаллизации важное значение имеют адсорбционные явления, связанные с наличием поверхностно-активных примесей. Адсорбированные вещества понижают межфазовую поверхностную энергию, изменяя параметры кристаллизации. Это оказывает большое влияние на формирование самого кристалла, характер пограничных фаз, форму и распределение неметаллических включений. Понижение поверхностного натяжения на границе расплав - кристалл связано с обогащением поверхностного слоя активными элементами (S, O, P, N) или образованием на поверхности пленки FeO, AIN, MnS и др. Рафинирование и модифицирование позволяют эффективно воздействовать на процесс адсорбции за счет удаления вредных примесей и газов, изменения характера кристаллизации и перераспределения кристаллизующих фаз и их количества. Поэтому обработка сталей барий-стронций-кальциевым карбонатом существенно повышает их жидкотекучесть, трещиноустойчивость, прочность, износостойкость и хладостойкость. Достигаемое уменьшение размеров дендритных кристаллов и зерна при введении в сталь высокоактивных элементов в составе карбоната сопровождается увеличением межзеренной поверхности, уменьшением удельной пограничной концентрации примесей. Это благоприятно сказывается на свойствах. Другим существенным достоинством предлагаемого способа является то, что карбонат является природным минералом, который уже содержит в себе высокоактивные элементы - рафинизаторы и модификаторы: барий, стронций, кальций, титан, магний, калий, натрий. Поэтому этот материал может служить заменителем дорогих и дефицитных искусственных лигатур и ферросплавов, которые применяют для обработки расплавов сталей, в частности ферроцерия, силикокальция, силикобария и др. Введение в сталь барий-стронций-кальциевого карбоната менее 4 кг/т не обеспечивает глубокого ее рафинирования и модифицирования, что не способствует достижению высоких значений вышеуказанных свойств. При введении в сталь барий-стронций-кальциевого карбоната более 7 кг/т в ней происходят процессы вторичного окисления, что отрицательно сказывается на свойствах. Введение в расплав барий-стронций-кальциевого карбоната в количестве 4-7 кг/т увеличивает жидкотекучесть сталей за счет того, что при рафинировании и модифицировании происходит изменение закономерности кристаллизации, в частности уменьшение величины кристаллов. Сочетание такого фактора с рафинирующим действием кальций-барий-стронциевого карбоната обеспечивает прирост не только жидкотекучести, но и трещиноустойчивости сталей. Пример. Проводили рафинирования и модифицирования в ковше пяти составов сталей различных структурных классов: 110Г13Л - аустенитного класса, 15Х25ТЛ - ферритного класса, 30Л, 25Х1МФ1РТЛ и 40ХН2МЛ - перлитного класса. В индукционной тигельной печи с основной футеровкой емкостью 60 кг выплавляли опытные составы сталей 110Г13Л, 15Х25ГЛ, 30Л, 25Х1МФ1РТЛ, 40ХH2МЛ по стандартной технологии. Для обработки стали в ковше использовали природный минерал: барий-стронций-кальциевый карбонат по расчету на заданное его содержание и выходящие за предлагаемые пределы. В табл.1-5 приведены химические составы сталей и количество вводимого барий-стронций-кальциевого карбоната, а в табл.6-10 - показатели свойств сталей. Карбонат применяли следующего состава, мас.%: бенстонит (Ва, Sr, Са) СО3 - 80%, полевой шпат - 10%, пироксен - 6%, кварц - 4%. Причем перед сливом металла в ковш в последний загружали карбонат фракции 35 мм и подогревали ковш до 500-600oС. Химический состав опытных сталей следующий, мас.%: 110Г13Л: С= 1,0








































Ст. 30Л - закалка в масле с 880oС, отпуск 650oC, воздух;
Ст. 15Х25ТЛ - нормализация с 1100oС, воздух;
Ст. 25Х1МФ1РТЛ - закалка в масле с 900oС, отпуск 650oС, воздух;
Ст. 40ХН2МЛ - закалка c 860oС в масле, отпуск 620oC, воздух. Из табл. 6-10 видно, что стали, обработанные по предлагаемому способу, существенно превосходят по механическим и литейным свойствам стали, обработанные по способу-прототипу. Использовать составы сталей, обработанных барий-стронций-кальциевым карбонатом в количествах, выходящих за заявляемые минимальные (составы 1, 7, 13, 19, 25) и максимальные (составы 4, 10, 16, 22, 28) значения, нецелесообразно, т.к. в этих случаях у сталей наблюдается уменьшение механических и литейных свойств.
Формула изобретения
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3
Похожие патенты:
Изобретение относится к области черной металлургии и может быть использовано при производстве низкоуглеродистых конструкционных сталей для изготовления труб, работающих в условиях низких температур и агрессивных сред
Способ легирования стали марганцем // 2212452
Изобретение относится к области черной металлургии, в частности к легированию металла марганцем из оксидных марганецсодержащих материалов в сталеразливочном ковше во время выпуска металла из сталеплавильного агрегата
Способ дефосфорации ферромарганца // 2209252
Изобретение относится к черной металлургии и может быть использовано для обработки ферросплавов
Способ обработки стали // 2208053
Изобретение относится к металлургии, в частности к способам раскисления и легирования жидкой стали алюминием
Способ производства стали // 2205880
Способ внепечного рафинирования стали // 2204613
Изобретение относится к комплексной обработке и доводке стали в ковше после ее выплавки в конвертере перед непрерывной разливкой
Способ обработки стали // 2203963
Изобретение относится к черной металлургии, конкретно к внепечному рафинированию стали в ковше шлакообразующими смесями
Способ раскисления и легирования стали // 2202628
Изобретение относится к черной металлургии, конкретнее к раскислению и легированию стали в процессе выпуска из конвертера в сталеразливочный ковш
Способ модифицирования стали // 2201458
Изобретение относится к черной металлургии и может быть использовано при модифицировании стали с содержанием кремния до 0,01%
Способ получения подшипниковой стали // 2200198
Изобретение относится к области металлургии, в частности к производству подшипниковых сталей в конвертерах
Способ обработки стали в ковше // 2218422
Изобретение относится к металлургии, конкретнее к обработке стали в ковше для повышения эффективности ее десульфурации
Способ обработки стали в ковше // 2218422
Изобретение относится к металлургии, конкретнее к обработке стали в ковше для повышения эффективности ее десульфурации
Способ внепечной обработки стали в ковше // 2219249
Изобретение относится к черной металлургии, конкретнее к внепечной обработке стали в ковше
Изобретение относится к черной металлургии, конкретнее к способам выплавки в дуговой печи легированной стали или полупродукта для ее получения
Брикет для раскисления и рафинирования стали // 2226556
Изобретение относится к области черной металлургии и может быть использовано при производстве высококачественной стали
Изобретение относится к способу литья хромсодержащей стали с небольшим числом поверхностных раковин и внутренних дефектов, имеющей мелкодисперсную структуру затвердевания, и к бесшовным стальным трубам, полученным с использованием этой стали
Изобретение относится к черной металлургии, а именно к производству качественных сталей, и может быть использовано в конвертерных цехах
Способ производства ванадийсодержащей стали // 2228372
Изобретение относится к черной металлургии и может быть использовано при производстве ванадийсодержащих сталей
Изобретение относится к черной металлургии, в частности к сталеплавильному производству