Парогенератор, работающий на ископаемом топливе
Изобретение относится к энергетике и может быть использовано в парогенераторах, работающих на ископаемом топливе и снабженных устройством очистки топочного газа от азота. Сущность изобретения заключается в том, что в парогенераторе, работающем на ископаемом топливе, содержащем камеру сгорания, после которой на стороне топочного газа через горизонтальный и вертикальный газоходы включено устройство очистки от азота для топочного газа, камера сгорания содержит множество расположенных на высоте горизонтального газохода горелок, вертикальный газоход выполнен для приблизительно вертикального потока топочного газа снизу вверх, а устройство очистки от азота для топочного газа выполнено для приблизительно вертикального потока топочного газа сверху вниз. Такое выполнение парогенератора требует особенно малую потребность в площади, а также обеспечивает особенно надежную очистку от азота топочного газа ископаемого топлива. 19 з.п. ф-лы, 3 ил.
Изобретение относится к парогенератору, работающему на ископаемом топливе, с устройством очистки от азота для топочного газа и с камерой сгорания для ископаемого топлива, после которой на стороне топочного газа подключено через горизонтальный газоход и вертикальный газоход устройство очистки от азота для топочного газа.
В энергетической установке с парогенератором полученный при сжигании ископаемого топлива топочный газ используют для испарения текучей среды в парогенераторе. Парогенератор содержит для испарения текучей среды испарительные трубы, нагрев которых топочным газом служит для испарения проходящей в них текучей среды. Пар, предоставляемый в распоряжение парогенератором, может быть, в свою очередь, предусмотрен, например, для подключенного внешнего процесса или для привода паровой турбины. Если пар приводит в действие паровую турбину, то через турбинный вал паровой турбины обычно приводится в действие генератор или рабочая машина. В случае генератора ток, выработанный генератором, может быть предусмотрен для ввода в объединенную электросеть и/или автономную электросеть. Парогенератор при этом может быть выполнен в виде прямоточного парогенератора. Прямоточный парогенератор известен из статьи J.Franke, W.Koehler и E. Wittchow "Концепции испарителей для парогенераторов Бенсона", опубликованной в VGB Kraftwerkstechnik 73 (1993), 4, стр. 352-360. В прямоточном парогенераторе нагрев парогенераторных труб, предусмотренных в качестве испарительных труб, приводит к испарению текучей среды в парогенераторных трубах за однократный проход. Парогенераторы выполняют обычно с камерой сгорания в вертикальной конструкции. Это означает, что камера сгорания рассчитана на протекание нагревающей среды или топочного газа в примерно вертикальном направлении. При этом за камерой сгорания на стороне топочного газа может быть подключен горизонтальный газоход, причем при переходе от камеры сгорания в горизонтальный газоход происходит отклонение потока топочного газа в приблизительно горизонтальное направление потока. Подобные камеры сгорания, однако, в основном вследствие обусловленных температурой изменений длины камеры сгорания требуют каркаса, на котором подвешивают камеру сгорания. Это обуславливает значительные технические затраты при изготовлении и монтаже парогенератора, которые являются тем больше, чем больше габаритная высота парогенератора. Особую проблему представляет расчет ограждающей стенки газохода или камеры сгорания парогенератора в связи с появляющимися там температурами стенок труб или материала. В докритической области давлений до порядка 200 бар температура ограждающей стенки камеры сгорания определяется в основном высотой температуры насыщения воды. Это достигается, например, за счет применения испарительных труб, которые имеют на своей внутренней стороне поверхностную структуру. Для этого можно использовать, в частности, испарительные трубы с внутренним оребрением, применение которых в прямоточном парогенераторе известно, например, из процитированной статьи. Эти так называемые оребренные трубы, то есть трубы с ребристой внутренней поверхностью, имеют особенно хороший теплопереход от внутренней стенки трубы к текучей среде. Согласно опыту нельзя избежать того, что ограждающие стенки камеры сгорания нагреваются различно. Вследствие различного нагрева испарительных труб выходные температуры текучей среды из сильнее нагретых испарительных труб поэтому являются значительно выше, чем в случае нормально или менее нагретых испарительных труб. За счет этого могут возникать разности температур между соседними испарительными трубами, которые ведут к тепловым напряжениям, которые снижают срок службы парогенератора или даже могут вызывать трещины труб. В основе изобретения поставлена поэтому задача - создать парогенератор, работающий на ископаемом топливе, снабженный камерой сгорания, после которой на стороне топочного газа через горизонтальный газоход включен вертикальный газоход, причем камера сгорания (4) содержит множество расположенных на высоте горизонтального газохода горелок, который требует особенно малых затрат на изготовление и монтаж и в котором одновременно разности температур между соседними испарительными трубами при эксплуатации парогенератора удержаны особенно малыми. В парогенераторе, работающем на ископаемом топливе, снабженном камерой сгорания, после которой на стороне топочного газа через горизонтальный газоход включен вертикальный газоход, причем камера сгорания содержит множество расположенных на высоте горизонтального газохода горелок, тем, что ограждающие стенки камеры сгорания выполнены из множества газоплотно сваренных друг с другом, вертикально расположенных испарительных труб, разделенных на первую и вторую группу, и соответственно нагружаемых текучей средой параллельно, и причем вторая группа включена в направлении потока текучей среды последовательно после первой группы испарительных труб, при этом ограждающие стенки камеры сгорания вдоль главного направления потока топочного газа разделены на первую и вторую область, причем первая область образована из испарительных труб первой группы, а вторая область из испарительных труб второй группы и вторая область на стороне топочного газа расположена между первой областью и горизонтальным газоходом. Изобретение исходит при этом из рассуждения, что выполняемый с особенно малыми затратами на изготовление и монтаж парогенератор должен иметь подвесную конструкцию, реализуемую простыми средствами. Изготавливаемый со сравнительно малыми техническими затратами каркас для подвески камеры сгорания может при этом сопровождаться особенно малой габаритной высотой парогенератора. Особенно малая габаритная высота парогенератора достигается за счет того, что камера сгорания выполнена в горизонтальной конструкции. Для этого горелки расположены в стенке камеры сгорания на высоте горизонтального газохода. Таким образом камера сгорания при эксплуатации парогенератора обтекается топочным газом в приблизительно горизонтальном направлении. При эксплуатации горизонтальной камеры сгорания, кроме того, должны бы быть особенно малыми разности температур между соседними испарительными трубами, чтобы надежно избежать преждевременной усталости материала. В случае горизонтальной камеры сгорания, однако, при эксплуатации следует учитывать, что для особенно малой габаритной высоты парогенератора устройство очистки от азота для топочного газа должно быть рассчитано на приблизительно вертикальный поток топочного газа сверху вниз. За счет этого является возможным вдувание необходимой в способе избирательного каталитического восстановления жидкости с содержанием аммиака вдоль главного направления потока топочного газа, за счет чего вертикальная протяженность устройства очистки от азота получается особенно малой. В парогенераторе с камерой сгорания, которая является обтекаемой топочным газом в примерно горизонтальном главном направлении потока, топочные газы, однако, после покидания горизонтального газохода текут в вертикальном газоходе вниз. Поэтому, чтобы заставить теперь топочный газ в устройстве очистки от азота для топочного газа течь приблизительно вертикально сверху вниз, необходим канал для топочного газа, в котором топочный газ направляется на стороне выхода после вертикального газохода снизу вверх, чтобы попасть затем в обтекаемое сверху вниз устройство очистки от азота для топочного газа. Этот дополнительный канал не требуется, если вертикальный газоход сконструирован для приблизительно вертикального потока топочного газа снизу вверх, а предусмотренное для топочного газа устройство очистки от азота сконструировано для приблизительно вертикального потока топочного газа сверху вниз. Предпочтительным образом очищенный топочный газ, покидающий устройство очистки от азота для топочного газа, можно использовать для подогрева воздуха в воздухоподогревателе. Воздухоподогреватель должен быть при этом расположен особенно экономично с точки зрения площади непосредственно под устройством очистки от азота для топочного газа. Подогретый воздух должен подаваться к горелкам парогенератора для сжигания ископаемого топлива. Если при сжигании ископаемого топлива к горелкам подают теплый воздух в противоположность холодному воздуху, то общий коэффициент полезного действия парогенератора повышается. Устройство очистки от азота для топочного газа сжигания ископаемого топлива содержит предпочтительным образом DeNOx-катализатор. Так как тогда можно особенно просто производить уменьшение содержания окислов азота в покидающем парогенератор топочном газе, например, посредством способа избирательного каталитического восстановления. Ограждающие стенки камеры сгорания предпочтительным образом образованы из газонепроницаемо сваренных друг с другом, вертикально расположенных испарительных труб, некоторое множество которых может быть соответственно параллельно нагружаемым текучей средой. Предпочтительным образом одна ограждающая стенка камеры сгорания является торцовой стенкой и две ограждающие стенки камеры сгорания являются боковыми стенками, причем боковые стенки разделены соответственно на первую группу и на вторую группу испарительных труб, причем торцовая стенка и первая группа испарительных труб являются параллельно нагружаемыми текучей средой и включены на стороне текучей среды перед параллельно нагружаемой текучей средой, второй группой испарительных труб. За счет этого обеспечено особенно выгодное охлаждение торцовой стенки. Предпочтительным образом перед испарительными трубами, соответственно параллельно нагружаемыми текучей средой, на стороне текучей среды включена общая система входного коллектора и после них включена общая система выходного коллектора. Парогенератор в такой форме выполнения позволяет надежное выравнивание напора между параллельно включенными испарительными трубами и тем самым особенно выгодное распределение текучей среды при обтекании испарительных труб. В дальнейшей предпочтительной форме выполнения внутренний диаметр труб множества испарительных труб камеры сгорания выбран в зависимости от соответствующего положения испарительных труб в камере сгорания. Таким образом испарительные трубы в камере сгорания могут быть согласованы с задаваемым на стороне газа профилем нагрева. Обусловленным за счет этого влиянием на обтекание испарительных труб особенно надежно выдержаны малыми разности температур на выходе испарительных труб камеры сгорания. Для особенно хорошей теплопередачи теплоты камеры сгорания на проходящую в испарительных трубах текучую среду, предпочтительным образом множество испарительных труб соответственно имеют на своей внутренней стороне ребра, образующие многозаходную резьбу. При этом предпочтительным образом угол подъема









С7=603,41 м. Под "приближенно" при этом следует понимать допустимое отклонение от определенного соответствующей функцией значения на +20%/-10%. Достигнутые изобретением преимущества, в частности, заключаются в том, что за счет горизонтальной камеры сгорания и вертикального газохода, сконструированного для приблизительно вертикального направления потока топочного газа снизу вверх, парогенератор имеет особенно малую потребность в площади. Эта особенно компактная конструкция парогенератора при встраивании парогенератора в паротурбинную установку позволяет иметь особенно короткие соединительные трубы от парогенератора к паровой турбине. Пример выполнения изобретения поясняется более подробно с помощью чертежей, которые показывают:
Фиг. 1 - работающий на ископаемом топливе парогенератор схематически в виде конструкции с двумя газоходами в виде сбоку;
Фиг. 2 - схематически продольное сечение через отдельную испарительную трубу;
Фиг.3 - систему координат с кривыми К1-К6. Соответствующие друг другу детали снабжены на всех чертежах одинаковыми ссылочными позициями. Парогенератор 2 согласно Фиг.1 придан в соответствие энергетической установке, не представленной более подробно на чертеже, которая содержит также паротурбинную установку. Произведенный в парогенераторе 2 пар используется при этом для привода паровой турбины, которая, со своей стороны, приводит в действие генератор для выработки электроэнергии. Выработанный генератором ток при этом предусмотрен для ввода в объединенную электросеть и/или автономную электросеть. Кроме того, может быть предусмотрено также ответвление частичного количества пара для ввода во внешний процесс, подключенный к паротурбинной установке, в случае которого речь может идти о процессе нагрева. Работающий на ископаемом топливе парогенератор 2 выполнен предпочтительным образом в виде прямоточного парогенератора. Он содержит камеру сгорания 4, выполненную в горизонтальной конструкции, после которой на стороне топочного газа через горизонтальный газоход 6 подключен вертикальный газоход 8. Нижняя область камеры сгорания 4 образована воронкой 5 с верхним краем соответственно вспомогательной линии с конечными точками Х и Y. Через воронку 5 можно отводить при эксплуатации парогенератора 2 золу ископаемого топлива В в расположенное под ней устройство очистки от золы 7. Ограждающие стенки 9 камеры сгорания 4 образованы из газонепроницаемо сваренных друг с другом, вертикально расположенных испарительных труб 10. При этом одна ограждающая стенка 9 является торцовой стенкой 9А и две ограждающие стенки 9 являются боковыми стенками 9В камеры сгорания 4 парогенератора 2. В виде сбоку парогенератора 2, показанном на Фиг.1, видна только одна из двух боковых стенок 9В. Испарительные трубы 10 боковых стенок 9В камеры сгорания 4 разделены на первую группу 11А и вторую группу 11В. Испарительные трубы 10 торцовой стенки 9А и первая группа 11А испарительных труб 10 являются параллельно нагружаемыми текучей средой S. Вторая группа 11А испарительных труб 10 также является параллельно нагружаемой текучей средой S. Для достижения особенно выгодной характеристики протекания текучей среды S через ограждающие стенки 9 камеры сгорания 4 и тем самым особенно хорошего использования теплоты сгорания ископаемого топлива В, испарительные трубы 10 торцевой стенки 9А и первой группы 11А включены на стороне текучей среды перед испарительными трубами 10 второй группы 11В. Также боковые стенки 12 горизонтального газохода 6 и/или боковые стенки 14 вертикального газохода 8 выполнены из газонепроницаемо сваренных друг с другом, вертикально расположенных парогенераторных труб 16 или соответственно 17. При этом из парогенераторных труб 16, 17 некоторое множество является соответственно параллельно нагружаемыми текучей средой S. Перед торцовой стенкой 9А и первой группой 11 испарительных труб 10 камеры сгорания 4 на стороне текучей среды включена общая система входного коллектора 18А для текучей среды S и после них подключена соответственно система выходного коллектора 20А. Точно также перед второй группой 11В боковых стенок 9В испарительных труб 10 на стороне текучей среды включена общая система входного коллектора 18В для текучей среды S и после них система выходного коллектора 20В. При этом системы входного коллектора 18А и 18В содержат соответственно множество параллельных входных коллекторов. Для подачи текучей среды S в систему входного коллектора 18А торцовой стенки 9А камеры сгорания 4 и первой группы 11А испарительных труб 10 боковых стенок 9В камеры сгорания 4 предусмотрена система трубопроводов 19А. Система трубопроводов 19А охватывает множество параллельно включенных трубопроводов, которые соответственно соединены с одним из входных коллекторов системы входного коллектора 18А. Система выходного коллектора 20А подключена на стороне выхода к системе трубопроводов 19В, которая предусмотрена для подачи текучей среды S в систему входного коллектора 18В второй группы 11В испарительных труб 10 боковых стенок 9В камеры сгорания 4. Подобным образом перед параллельно нагружаемыми текучей средой S парогенераторными трубами 16 боковых стенок 12 горизонтального газохода 6 включена общая система входного коллектора 21 и после них общая система выходного коллектора 22. При этом для подачи текучей среды S в систему входного коллектора 21 парогенераторных труб 16 предусмотрена система трубопроводов 25. Система трубопроводов 25 охватывает также и здесь множество параллельно включенных трубопроводов, которые соответственно соединены с одним из входных коллекторов системы входного коллектора 21. На стороне входа система трубопроводов 25 подключена к системе выходного коллектора 20В второй группы 11В испарительных труб 10 боковых стенок 9А камеры сгорания 4. Покидающая камеру сгорания 4 нагретая текучая среда S направляется таким образом в боковые стенки 12 горизонтального газохода 6. За счет этого выполнения прямоточного парогенератора 2 с системами входного коллектора 18А, 18В, а также 21 и с системами выходного коллектора 20А, 20В и 22 можно иметь особенно надежное выравнивание напора между параллельно включенными испарительными трубами 10 камеры сгорания 4 или соответственно параллельно включенными парогенераторными трубами 16 горизонтального газохода 6 так, что соответственно все включенные параллельно испарительные или соответственно парогенераторные трубы 10 или соответственно 16 имеют одинаковую общую потерю напора. Это означает, что расход в более сильно нагретой испарительной трубе 10 или соответственно парогенераторной трубе 16 по сравнению с менее нагретой испарительной трубой 10 или соответственно парогенераторной трубой 16 должен увеличиваться. Испарительные трубы 10, как представлено на Фиг.2, содержат на своей внутренней стороне ребра 40, которые образуют подобие многозаходной резьбы и имеют высоту ребер R. При этом угол подъема

L(W, tА)=(C1+C2


L(W,TBRK)=(C3


где
C1=8 м/с;
С2=0,0057 м/кг;
С3=-1,905



С4=0,286 (с

C5=3

С6=-0,842 м/oС;
С7=603,41 м. Приближенно при этом следует понимать как допустимое отклонение на +20%/-10% от значения, определенного через соответствующую функцию. При этом всегда при любом, но постоянном BMCR-значении W парогенератора для длины L камеры сгорания 4 справедливо большее значение из функций (I) и (II). В качестве примера для вычисления длины L камеры сгорания 4 в зависимости от BMCR-значения W парогенератора 2, в системе координат согласно Фиг.3 показаны шесть кривых К1-К6. При этом кривым присвоены соответственно следующие параметры:
К1:tA=3 c согласно (1),
K2:tA=2,5 c согласно (1),
К3:tA=2 с согласно (1),
К4:tBRK=1200oС согласно (2),
К5:tBRK=1300oC согласно (2) и
К6:tBRK=1400oС согласно (2). Для определения длины L камеры сгорания 4 таким образом, например, для времени выгорания tA=3 с и выходной температуры tBRK=1200oС топочного газа G из камеры сгорания 4 должны привлекаться кривые К1 и К4. Отсюда получается при заданном BMCR-значении W парогенератора 2
W=80 кг/с длина L=29 м согласно К4,
W=160 кг/с длина L=34 м согласно К4,
W=560 кг/с длина L=57 м согласно К4. Для времени выгорания tA=2,5 с и выходной температуры топочного газа G из камеры сгорания 4 tBRK=1300oС должны привлекаться, например, кривые К2 и К5. Отсюда получается при заданном BMCR-значении W парогенератора 2
W=80 кг/с длина L=21 м согласно К2,
W=180 кг/с длина L=23 м согласно К2 und К5,
W=560 кг/с длина L=37 м согласно К5. Времени выгорания tA= 2 с и выходной температуре топочного газа G из камеры сгорания tTBRK=1400oС соответствуют, например, кривые К3 и К6. Отсюда получается при заданном BMCR-значении W парогенератора 2
W=80 кг/с длина L=18 м согласно К3,
W=465 кг/с длина L=21 м согласно К3 und K6,
W=560 кг/с длина L=23 м согласно К6. При эксплуатации парогенератора 2 к горелкам 70 подают ископаемое топливо В и воздух. При этом воздух подогревают в воздухоподогревателе остаточным теплом топочного газа G, и затем, что на чертеже более подробно не представлено, сжимают и подводят к горелкам 70. Факелы F горелок 70 при этом направлены горизонтально. За счет конструкции камеры сгорания 4 создается поток возникающего при горении топочного газа G в приблизительно горизонтальном главном направлении потока 24. Топочный газ G попадает через горизонтальный газоход 6 в вертикальный газоход 8, обтекаемый топочным газом G снизу вверх. На стороне выхода после вертикального газохода 8 топочный газ G через соединительный канал 50 попадает в устройство очистки от азота 54 для топочного газа G. Через устройство очистки от азота 54 для топочного газа G в зависимости от вида топлива В, на котором работает парогенератор 2, с помощью сжатого воздуха в топочный газ G вводят определенное количество аммиачной воды в качестве восстановителя М. Это является необходимым, так как степень очистки от окислов азота (NOx) зависит от вида ископаемого топлива В, на котором работает парогенератор 2. Таким образом обеспечивается особенно надежная очистка топочного газа G от азота во всех режимах работы парогенератора 2. Очищенный топочный газ G1 покидает устройство очистки от азота 54 для топочного газа G через подающий трубопровод 56, который входит в воздухоподогреватель 58. В воздухоподогревателе 58 происходит подогрев воздуха, подлежащего подведению к горелкам 70 для сжигания ископаемого топлива В. Топочный газ G покидает воздухоподогреватель 58 через дымоход 60 и попадает через электронный фильтр 62 в окружающую среду. Поступающая в экономайзер 28 текучая среда S попадает через систему трубопроводов 19А в систему входного коллектора 18А, которая придана в соответствие торцовой стенке 9А и испарительным трубам 10 первой группы 11А боковых стенок 9В камеры сгорания 4 парогенератора 2. Пар, возникающий в вертикально расположенных, сваренных друг с другом газонепроницаемо испарительных трубах 10 камеры сгорания 4 парогенератора 2, или соответственно пароводяная смесь собирается в системе выходного коллектора 20А для текучей среды S. Оттуда пар или соответственно пароводяная смесь попадает через систему трубопроводов 19В в систему входного коллектора 18В, приданную в соответствие второй группе 11В испарительных труб 10 боковых стенок 9В камеры сгорания 4. Пар, возникающий в вертикально расположенных, сваренных друг с другом газонепроницаемо испарительных трубах 10 камеры сгорания 4 парогенератора 2, или соответственно паровая смесь собирается в системе выходного коллектора 20В для текучей среды S. Оттуда пар или соответственно пароводяная смесь через систему трубопроводов 25 попадает в систему входного коллектора 21, которая придана в соответствие парогенераторным трубам 16 боковых стенок 12 горизонтального газохода. Пар, возникающий в парогенераторных трубах 16, или соответственно пароводяная смесь попадает через систему выходного коллектора 22 в стенки вертикального газохода 8 и оттуда снова в поверхности нагрева пароперегревателя 23 горизонтального газохода 6. В поверхностях нагрева пароперегревателя 23 происходит дальнейший перегрев пара, который после этого подводится для использования, например, для привода паровой турбины. В парогенераторе 2 за счет выбора длины L камеры сгорания 4 в зависимости от BMCR-значения W парогенератора 2 обеспечено, что теплота сгорания ископаемого топлива В используется особенно надежно. Кроме того, парогенератор 2 за счет своей горизонтальной камеры сгорания 4 и своего устройства очистки от азота 54, подключенного непосредственно после вертикального газохода 8, имеет особенно малую потребность в пространстве. При этом во всех режимах работы парогенератора 2 особенно простым образом обеспечена особенно надежная очистка от азота топочного газа G.
Формула изобретения
L (W, tA)=(С1+С2


и
L (W, ТBRK)=(С3


где С1=8 м/с;
С2=0,0057 м/кг;
С3=-1,905



С4=0,286 (с

С5=3

С6=-0,842 м/oC;
С7=603,41 м,
причем для BMCR-значения (W) справедливо соответственно большее значение длины (L) камеры сгорания (4).
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3