Способ определения герметичности изолированного объема космического аппарата в условиях космического полета

 

Изобретение относится к области испытательной техники, в частности к испытаниям на герметичность систем космических аппаратов (КА), имеющих в своем составе изолируемые последовательно или параллельно соединенные объемы, заполненные рабочим веществом. Техническим результатом изобретения является осуществление возможности определения места течи в системе изолированных объемов и контроля герметичности газонаполненной системы в процессе длительной эксплуатации КА в условиях непилотируемого полета. Это обеспечивается за счет того, что согласно изобретению способ включает измерение давления и температуры в контролируемом объеме в начальный момент времени, перепуск газа в течение контрольного времени с последующим измерением давления и температуры в контролируемом объеме, по измерению давления и температуры определение контрольной скорости изменения давления за контрольное время и контроль герметичности по сравнению контрольной и текущей скорости изменения давления в контролируемом объеме. В качестве перепуска газа используют выход газа из контролируемого объема при штатной работе реактивного двигателя. За контрольное время принимают время штатной работы реактивного двигателя. Производят измерение параметров, характеризующих тягу реактивного двигателя, по которым определяют величину тяги реактивного двигателя при штатной работе за контрольное время. По времени работы и определенной величине тяги реактивного двигателя определяют фактический расход газа из контролируемого объема, по которому определяют контрольную скорость изменения давления в контролируемом объеме. По окончании работы реактивного двигателя изолируют контролируемый объем, а измерение давления и температуры в контролируемом объеме в течение простоя реактивного двигателя проводят через фиксированные промежутки времени, на каждом из которых определяют текущую скорость изменения давления, по сравнению контрольной и текущей скорости изменения давления контролируют и определяют величину негерметичности контролируемого объема. 1ил.

Изобретение относится к области испытательной техники, в частности к испытаниям на герметичность систем космических аппаратов (КА), имеющих в своем составе изолируемые последовательно или параллельно соединенные объемы, заполненные рабочим веществом, в условиях наземной и орбитальной эксплуатации.

Известен способ контроля герметичности в атмосферных условиях систем крупногабаритных КА, заключающийся в оценке негерметичности систем КА путем измерения скорости уменьшения давления контрольного газа в системах КА, в том числе в ампулизированной системе по датчикам давления телеметрической системы измерения параметров КА [1].

Недостатком известного способа является его низкая точность, обусловленная значительными градиентами температур, наличие предварительного тестирования измерительных приборов при помощи образцовых приборов, использование дополнительной вакуумной камеры, в которой устанавливаются средства измерения, отсутствие возможности применения в условиях полета при значительной удаленности и недоступности КА, ограниченности возможностей средств контроля и возможности искажения показаний датчиков.

Известен способ контроля герметичности отсека КА по скорости изменения давления в отсеке [2], заключающийся в оценке негерметичности систем КА путем измерения или определения скорости уменьшения давления контрольного газа в системах КА по датчикам давления телеметрической системы измерения параметров КА, включающий измерение давления и температуры в контролируемом объеме в начальный момент времени, перепуск газа в течение контрольного времени, с последующим измерением давления и температуры в контролируемом объеме, по измерению давления и температуры определение контрольной скорости изменения давления за контрольное время и контроль герметичности по сравнению контрольной и текущей скорости изменения давления в контролируемом объеме.

Такие КА, как спутники нового поколения, отличаются размещением основного технологического оборудования без герметичного отсека на каркасе конструкции КА, приводимого в движение двигательной установкой (ДУ), состоящей из протяженных участков магистралей трубопроводов, агрегатов - изолируемых с помощью отсечной арматуры объемов, заполненных рабочим веществом, например газом, и реактивных двигателей (РД) возможно различных типов. При штатной работе предполагается герметичность технологических узлов, систем и агрегатов ДУ. По опыту работы Центра управления космическими полетами (ЦУП) в ходе длительного полета возникает необходимость контроля герметичности систем ДУ непилотируемых автоматических КА с целью прогнозирования длительности его работы путем определения утечек из магистралей ДУ. В случае возникновения течи возможно нарушение режимов работы РД, нарушение ориентации КА и потеря топлива, что сокращает срок службы КА. Благодаря конструктивным решениям, обеспечивающим повышение надежности работы ДУ КА, возможно при своевременном обнаружении места или участка течи избежать потерь топлива путем исключения из работы негерметичного участка. При этом недопустимо прерывание штатной работы КА, например спутника связи типа "Ямал", при проведении контрольных проверок, так как это может привести, в частности, к невозможности возобновления работы КА.

Недостатком известного способа является невозможность его применения для контроля герметичности и определения утечек из эксплуатируемого КА при штатной его работе (периодических кратковременных включениях РД ДУ КА) и с имеющимся фиксированным набором контрольно-измерительного оборудования в условиях недоступности КА.

Техническим результатом предложенного способа является осуществление возможности определения места течи в системе изолированных объемов ДУ и контроля герметичности газонаполненной системы, в том числе ДУ КА, в процессе длительной эксплуатации КА в условиях непилотируемого полета.

Указанный технический результат достигается тем, что в способе определения герметичности изолированного объема космического аппарата в условиях космического полета, включающем измерение давления и температуры в контролируемом объеме в начальный момент времени, перепуск газа в течение контрольного времени, с последующим измерением давления и температуры в контролируемом объеме, по измерению давления и температуры определение контрольной скорости изменения давления за контрольное время и контроль герметичности по сравнению контрольной и текущей скорости изменения давления в контролируемом объеме, в отличие от известного в качестве перепуска газа используют выход газа из контролируемого объема при штатной работе реактивного двигателя и за контрольное время принимают время штатной работы реактивного двигателя, производят измерение параметров, характеризующих тягу реактивного двигателя, по которым определяют величину тяги реактивного двигателя при штатной работе за контрольное время и определяют величину тяги по времени работы и определенной величине тяги реактивного двигателя определяют фактический расход газа из контролируемого объема, по которому определяют контрольную скорость изменения давления в контролируемом объеме и по окончании работы реактивного двигателя изолируют контролируемый объем, измерение давления и температуры в контролируемом объеме в течение простоя реактивного двигателя проводят через фиксированные промежутки времени, на каждом из которых определяют текущую скорость изменения давления, по сравнению контрольной и текущей скорости изменения давления контролируют и определяют величину негерметичности контролируемого объема.

Суть изобретения поясняется чертежом, на котором приведена принципиальная схема контроля герметичности изолируемого объема, в частности газонаполненных узлов, агрегатов, участков магистралей ДУ, где реактивный двигатель 1 последовательно связан через отсечной клапан 2 с изолируемым объемом 3, с присоединенными к нему датчиком давления 4 и датчиком температуры 5, и через отсечной клапан 6 с изолируемым объемом 7, с присоединенными к нему аналогичными датчиком давления 8 и датчиком температуры 9.

Испытания проводятся в процессе эксплуатации КА параллельно с выполнением основных функций испытуемой системы - объединенной двигательной установки (ОДУ)КА, в качестве пробного газа используется рабочее тело (например, газообразный ксенон, Хе, высокой чистоты), в качестве контрольной течи используется управляемый дроссельный элемент системы ОДУ КА, например электрореактивный двигатель M140 или СПД70, давление измеряют датчиками типа МД-6С, МД-40С, температуру - датчиками типа ТП-018 (ТМ-168).

Способ контроля герметичности изолированных участков систем КА (ОДУ КА), заполненных рабочим веществом, применяющимся для выполнения основных функций системы на этапе эксплуатации, осуществляется следующим образом.

Проводят измерение давления P1 и температуры T1 в контролируемом объеме V1 в начальный момент времени, затем перепуск газа в течение контрольного времени к, с последующим измерением давления P и температуры Т в контролируемом объеме. В качестве перепуска газа используют выход газа из контролируемого объема при штатной работе реактивного двигателя и за контрольное время принимают время штатной работы реактивного двигателя. Производят измерение параметров, характеризующих тягу реактивного двигателя, по которым определяют величину тяги реактивного двигателя при штатной работе за контрольное время, например угловым акселерометром измеряют величину углового ускорения КА [5] и, зная плечо силы тяги реактивного двигателя l и момент инерции КА относительно центра масс J, определяют величину тяги [4] R = J/(l). (1) По времени работы и определенной величине тяги реактивного двигателя определяют фактический расход газа из контролируемого объема [3] Gк=R/, где - скорость газа на срезе сопла, для электрореактивных двигателей является характеристикой двигателя, которую можно считать постоянной [3,4]. По измерению давления и температуры проводят определение контрольной скорости изменения давления за контрольное время.

Pк/к. (3) По окончании работы реактивного двигателя изолируют контролируемый объем - участок магистрали ОДУ КА - посредством управляемых отсечных клапанов.

Измерение давления и температуры в контролируемом объеме в течение простоя реактивного двигателя проводят через фиксированные промежутки времени, на каждом из которых определяют текущую скорость изменения давления. По сравнению контрольной и текущей скорости изменения давления контролируют и определяют степень негерметичности контролируемого объема.

Техническим заданием в объеме Vi допускается негерметичность не более qi max, где тогда максимальный допустимый перепад давлений при фиксированной температуре T1 за время = (2-1) составит а давление P* 2 в полости Vi
P* 2 (T1)=P1(T1)-Pimax(T1). (6)
При изменении температуры величина конечного давления может измениться в (T1, T2) раз,
P* 2 (T2)=P* 2 (T1), (7)
что, в свою очередь, изменит допустимый перепад давлений Р* в конце интервала наблюдений
P*=P1(T1)-P* 2 (T2). (8)
С учетом (4)-(7) зависимость (8) примет окончательный вид

Объем считается герметичным при условии
(P0i/Pi)(i/0i)1 (10)
на одинаковых интервалах времени 0i = i условие (10) примет вид
P0i/Pi1. (11)
Величина негерметичности определяется из соотношения
qi = PiVi/i (12)
величина утечки массы газа определяется из соотношения
Gi = (Pк/Pi)(i/к)Gк. (13)
При использовании предложенного способа осуществляется возможность контроля герметичности систем КА, заполненных рабочим телом, на этапе эксплуатации и как следствие повысить надежность работы системы ДУ КА и продлить срок эксплуатации КА.

Литература
1. Патент РФ 2112945, G 01 M 3/00 1996 г.

2. Серебряков В.Н. Основы проектирования систем жизнеобеспечения экипажа космических летательных аппаратов. - M.: Машиностроение, 1983, 160 с.

3. Фаворский О. Н. , Фишгойт В.В., Янтовский Е.И. Основы теории космических электрореактивных установок: Учеб. пособие для ВТУЗов. - M.: Высшая школа, 1978, 384 с.

4. Раушенбах Б.В., Токарь Е.Н. Управление ориентацией космических аппаратов. - M.: Наука, 1974, 600 с.

5. Каргу Л.И. Измерительные устройства летательных аппаратов: Учеб. пособие для технических вузов. - M.: Машиностроение, 1988, 256 с.


Формула изобретения

Способ определения герметичности изолированного объема космического аппарата в условиях космического полета, включающий измерение давления и температуры в контролируемом объеме в начальный момент времени, перепуск газа в течение контрольного времени с последующим измерением давления и температуры в контролируемом объеме, по измерению давления и температуры определение контрольной скорости изменения давления за контрольное время и контроль герметичности по сравнению контрольной и текущей скоростей изменения давления в контролируемом объеме, отличающийся тем, что в качестве перепуска газа используют выход газа из контролируемого объема при штатной работе реактивного двигателя и за контрольное время принимают время штатной работы реактивного двигателя, производят измерение параметров, характеризующих тягу реактивного двигателя, по которым определяют величину тяги реактивного двигателя при штатной работе за контрольное время, по времени работы и определенной величине тяги реактивного двигателя определяют фактический расход газа из контролируемого объема, по которому определяют контрольную скорость изменения давления в контролируемом объеме и по окончании работы реактивного двигателя изолируют контролируемый объем, измерение давления и температуры в контролируемом объеме в течение простоя реактивного двигателя производят через фиксированные промежутки времени, на каждом из которых определяют текущую скорость изменения давления, по сравнению контрольной и текущей скоростей изменения давления контролируют и определяют степень негерметичности контролируемого объема.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к испытательной технике и может быть использовано для испытания на герметичность отливок из алюминиевых сплавов с открытой полостью

Изобретение относится к измерительной технике и может быть использовано в народном хозяйстве для определения расхода течей теплоносителя акустического происхождения, в частности для контроля и диагностики герметичности трубопроводов (.с теплоизоляцией и без теплоизоляции) и оборудования с реакторами РБМК, ВВР на АЭС

Изобретение относится к области авиации

Изобретение относится к средствам контроля изделий на наличие трещин, негерметичности и может быть использовано, в частности, при диагностике топливных баков ракет и корпусов обитаемых отсеков космических аппаратов

Изобретение относится к области испытательной техники

Изобретение относится к испытаниям на герметичность подземных резервуаров, создаваемых подземным растворением через буровые скважины, предназначенных для хранения жидких и газообразных продуктов в растворимых формациях

Изобретение относится к контрольно-измерительной технике и может быть использовано для испытания стыков труб на герметичность как в процессе строительства, сдачи в эксплуатацию, так и в процессе эксплуатации
Изобретение относится к области испытательной техники и может найти применение в таких областях техники, как газовая, атомная, авиационная, машиностроение, где предъявляются повышенные требования к герметичности, долговечности и надежности изделий, например, таких как трубопроводы и замкнутые оболочки

Изобретение относится к области испытательной техники и может найти применение в космической отрасли при испытании космических аппаратов (КА), атомной, химической промышленности, в отраслях машиностроения и т.д
Изобретение относится к испытательной технике и направлено на повышение достоверности контроля и обеспечение возможности контроля оболочек, расположенных конструктивно внутри агретов, например разделительных оболочек баков
Изобретение относится к испытательной технике, в частности для определения мест негерметичности в холодильных агрегатах при массовом производстве

Изобретение относится к технологическому оборудованию, используемому при производстве запорной промышленной трубопроводной арматуры, а также в процессе их ремонта для гидравлического испытания на прочность, плотность и герметичность

Изобретение относится к испытаниям изделий на герметичность и определению внутреннего объема конструкций, представляющих собой оболочки сложной формы, и может быть использовано в отраслях судостроения, атомной энергетики, машиностроения и других

Изобретение относится к области испытательной техники, в частности для определения герметизации труб
Изобретение относится к области испытательной техники

Изобретение относится к системам измерения герметичности объемов, например емкостей транспортных средств: автомобилей, подводных и надводных аппаратов и т.д

Изобретение относится к технике контроля трубопроводных систем и предназначено для определения места повреждения и оценок размера повреждения в труднодоступных или недоступных техническому надзору напорных трубопроводах, в частности в подводных трубопроводах и в дюкерах
Наверх